Overlay Networks

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Skype

Skype

Niklas Zennstrom and Janus =
Friis in 2003 QL=
&, Contacts | (8] Dial | €B) callList

© Thomas ~

T Van Haller
© Wil Ting

Instant Messenger (IM) R
with voice support

Based on peer-to-peer (P2P) |(sreween
networking technology

SKYD! ™ § o ©

: EEX
b o

I
LA

Developed by KaZaA

Skype Network Architecture

* Login server is the
only central server

Skype login
server

Message exchange
. with the login server

* Both ordinary host durng login

and super nodes are

clients

* Any node with public
IP address and
resources can
become a super node

ordinary host

Challenges of Firewalls and NATs

* Firewalls

— Often block UDP traffic

— Usually allow hosts to initiate connections on port 80
(HTTP) and 443 (HTTPS)

* Network Address Translation (NAT)

— Cannot easily initiate traffic to a host behind a NAT
Skype must deal with these problems

— Discovery: client exchanges messages with super node
— Traversal: sending data through an intermediate peer

Data Transfer

UDP directly between the two hosts

— Both hosts have public IP addresses, no UDP blocks
— Easy: the hosts can exchange UDP packets directly
* UDP between an intermediate peer

— One or both hosts with a NAT

— Neither host’s network blocks UDP traffic

— Solution: direct UDP packets through another node

TCP between an intermediate peer
— Hosts behind NAT and UDP-restricted firewall
— Solution: TCP connections through another node

Silence Suppression

* What to transfer during quiet periods?
— Could save bandwidth by reducing transmissions
» Skype does not appear to do silence suppression
— Maintain the UDP bindings in the NAT boxes
— Provide background noise to play at the receiver
— Avoid drop in the TCP window size

Skype sends data when call is “on hold”
— Send periodic messages as a sort of heartbeat
— Maintain the UDP bindings in the NAT boxes

Skype Data Transfer

* Audio compression
— Voice packets around 67 bytes
— Up to 140 packets per second
— Around 5 KB/sec (40 kbps) in each direction
* Encryption
— Data packets are encrypted in both directions
— To prevent snooping on the phone call
— ... by someone snooping on the network
— ... or by the intermediate peers forwarding data

Overlay Networks

Overlay Networks

Overlay Networks

— Focus at the application level
] /ﬁ £l |

IP Tunneling to Build Overlay Links

* IP tunnel is a virtual point-to-point link
— lllusion of direct link between two separated nodes

2 8 E F
Logical view: =< = tunnel ._.

F
Physica view: @i Q@B O7 > @D @B
* Encapsulation of packet inside an IP datagram
— Node B sends a packet to node E
— ... containing another packet as the payload

Tunnels Between End Hosts

Src: A

Dest: B

Src: A
Dest: C

Src: A
Dest: B

Overlay Networks

Logical network built on top of physical network
— Overlay link is tunnel through underlying network

Many logical networks may coexist at once

— Over the same underlying network

* Nodes are often end hosts

— Acting as intermediate nodes that forward traffic
Who controls the nodes providing service?

— The party providing the service

— Distributed collection of end users

Case Study: Resilient Overlay
Networks

RON: Resilient Overlay Networks

Premise: by building application overlay network,
can increase performance and reliability of routing

Princeton vale R O N

Resilient Overlay Networks

application-layer
router Two-hop (application-level)

Berkeley-to-Princeton route

Berkeley
http://nms.csail.mit.edu/ron/

RON Circumvents Policy Restrictions

* |P routing depends on AS routing policies

RON Adapts to Network Conditions

* Start experiencing bad performance
— Then, start forwarding through intermediate host

RON Customizes to Applications

& bulk transfer

* VolIP traffic: low-latency path
* Bulk transfer: high-bandwidth path

19

How Does RON Work?

* Keeping it small to avoid scaling problems
— A few friends who want better service
— Just for their communication with each other
—E.g., VoIP, gaming, collaborative work, etc.

* Send probes between each pair of hosts

20

How Does RON Work?

* Exchange the results of the probes

— Each host shares results with every other host

— Essentially running a link-state protocol!

—So, every host knows the performance properties
* Forward via intermediate host when needed

21

RON Works in Practice

* Faster reaction to failure
— RON reacts in a few seconds
— BGP sometimes takes a few minutes
* Single-hop indirect routing
— No need to go through many intermediate hosts
— One extra hop circumvents the problems
* Better end-to-end paths
— Circumventing routing policy restrictions
— Sometimes the RON paths are actually shorter

22

RON Limited to Small Deployments

Extra latency through intermediate hops
— Software and propagation delays for forwarding
* Overhead on the intermediate node
— Imposing CPU and I/O load on the host
* Overhead for probing the virtual links
— Bandwidth consumed by frequent probes
— Trade-off between probe overhead & detection speed
* Possibility of causing instability
— Moving traffic in response to poor performance
,, — May lead to congestion on the new paths

Electronic Mail

Mail Servers and User Agents

T mail server
'.!‘/ agem
* Mail servers
— Always on and always accessible
— Transferring e-mail to and from other servers
e User agents
— Sometimes on and sometimes accessible
— Intuitive interface for the user

Store-and-Forward Model

user [o | user
agent 0oooo 00000 "| agent
mail server mail server

* Messages sent through a series of servers

— A server stores incoming messages in a queue

— ... to await attempts to transmit them to next hop
¢ If the next hop is not reachable

— The server stores the message and tries again later
* Each server adds a Received header

— To aid in diagnosis of problems

2

Scenario: Alice Sends Message to Bob

1) Alice uses UA to compose 4) Alice’s mail server sends
message “to” Alice’s message over the
bob@someschool.edu TCP connection

2) Alice’s UA sends message to 5) Bob’s mail server places
her mail server; message the message in Bob’s
placed in message queue mailbox

3) Alice’s mail server opens TCP 6) Bob invokes his user agent
connection with Bob’s mail to read message
server

i (.0

—~—"|agent
OB

A6

Identifying the Mail Server

* Alice identifying her mail server

— User-agent configuration (e.g., smtp.cs.princeton.edu)

* Alice’s mail server identifying Bob’s mail server

— From name in Bob’s e-mail address (e.g., yale.edu)

* Domain name is not necessarily the mail server

— Mail server may have longer/cryptic name
— Multiple servers may exist to tolerate failures

* |dentifying the mail server for a domain

— DNS query asking for MX records (Mail eXchange)
., — Then, a regular DNS query to learn the IP address

Simple Mail Transfer Protocol

access
Ger| SMTP fiimg) SMTP frsseeg Protocol s
agent 00000 00000 agent
mail server mail server

* Client-server protocol
— Client is sender, server is receiver
* Reliable data transfer
— Built on top of TCP (on port 25)
* Push protocol
— Sending server pushes file to the receiving server
— ... rather than waiting for the receiver to request it

29

Sample SMTP interaction

: Do you like ketchup?
: How about pickles?

: 250 Message accepted for delivery
. QUIT
: 221 hamburger.edu closing connection

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bobfhamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself
Cc

Cc

C:

S

(o}

S

Try SMTP For Yourself

* Running SMTP
— Run “telnet servername 25” at UNIX prompt
— See 220 reply from server
— Enter HELO, MAIL FROM, RCPT TO, DATA commands
* Spoofing is easy!
— Just forge the argument of the “FROM” command
— ... leading to all sorts of problems with spam
* Spammers can be even more clever
—E.g., using open SMTP servers to send e-mail
— E.g., forging the “Received” header

Multiple Server Hops

* Typically at least two mail servers
— Sending and receiving email servers
* May be more
— Separate servers for key functions
* Spam filtering, virus scanning
— Servers that redirect the message
* From jrex@princeton.edu to jrex@cs.princeton.edu
* Messages to princeton.edu go through extra hops
— Electronic mailing lists
* Mail delivered to the mailing list’s server
. * ...and then the list is expanded to each recipient

Example With Received Header

: tanford.edu>
Received: from ribavirin.CS.Princeton.EDU (ribavirin.CS.Princeton.EDU [128.112.136.44])
by newark.CS.Princeton.EDU (8.12.11/8.12.11) with SMTP id kO4M5R7Y023164
for <jrexenewark.CS.Princeton.EDU>; Wed, 4 Jan 2006 17:05:37 -0500 (EST)
Received: from bluebox.CS.Princeton.EDU ([128.112.136.38])
by ribavirin.CS.Princeton.EDU (SMSSMTP 4.1.0.19) with SMTP id M2006010417053607946
for <jrexenewark.CS.Princeton.EDU>; Wed, 04 Jan 2006 17:05:36 -0500
Received: from smtp .Stanford.EDU p .Stanford.EDU [171.64.10.152])
by bluebox.CS.Princeton.EDU (8.12.11/8.12.11) with ESMTP id k04M5XNQ005204
for <jrex@cs.princeton.edu>; Wed, 4 Jan 2006 17:05:35 -0500 (EST)
Received: from [192.168.1.101] (adsl-69-107-78-147.dsl.pltn13.pacbell.net [69.107.78.147])
(authenticated bits=0)
by smtp-roam.Stanford.EDU (8.12.11/8.12.11) with ESMTP id k04M5W92018875
/SSLv3 cipl bits=256 verify=NOT);
Wed, 4 Jan 2006 14:05:32 -0800
Message-ID: <43BC46AF.3030306€cs.stanford. edu>
Date: Wed, 04 Jan 2006 14:05:35 -0800
From: Martin Casado <casado@cs.stanford.edu>
Agent: Mozilla ird 1.0 (Windows/20041206)
MIME-Version: 1.0
To: jrex@CS.Princeton.EDU

CC: Martin Casado <casado@cs.stanford.edu>
Subject: Using VNS in Class

ype: text/plain; 50-8859-1; format=flowed
Content-Transfer-Encoding: 7Tbit

Retrieving E-Mail From the Server

* Server stores incoming e-mail by mailbox
— Based on the “From” field in the message
* Users need to retrieve e-mail
— Asynchronous from when the message was sent
— With a way to view and organize messages
* In the olden days...
— User logged on to machine where mail was delivered
— Users received e-mail on their main work machine
* Now, user agent typically on a separate machine
— And sometimes on more than one such machine

Influence of PCs on E-Mail Retrieval

* Separate machine for personal use
— Users did not want to log in to remote machines
* Resource limitations

— Most PCs did not have enough resources to act as a
full-fledged e-mail server

* Intermittent connectivity
— PCs only sporadically connected to the network
— Too unwieldy to have sending server keep trying
* Led to the creation of new e-mail agents
L POP, IMAP, and Web-based e-mail

Post Office Protocol (POP)

* POP goals
— Support users with intermittent connectivity
— Retrieve e-mail messages when connected
* Typical user-agent interaction with a POP server
— Connect to the server
— Retrieve all e-mail messages
— Store messages on the user’s PCs as new messages
— Delete the messages from the server
— Disconnect from the server

Limitations of POP

* Does not handle multiple mailboxes easily

— Designed to put user’s incoming e-mail in one folder
* Not designed to keep messages on the server

— Instead, designed to download messages to client
* Poor handling of multi-client access to mailbox

— Increasingly important as users have home PC, work
PC, laptop, cyber café computer, PDA, etc.

* High network bandwidth overhead

— Transfers all of e-mail messages, often well before
they are read (and they might not be read at all!)

Interactive Mail Access Protocol (IMAP)

* Supports connected and disconnected operation
— Users can download message contents on demand

* Multiple clients can connect to mailbox at once
— Detects changes made to mailbox by other clients
— Server keeps message state (e.g., read, replied to)

* Access to parts of messages and partial fetch
— Clients can retrieve individual parts separately
— E.g., message text without attachments

* Multiple mailboxes on the server

*. Server-side searches

Web-Based E-Mail

* User agent is an ordinary Web browser
— User communicates with server via HTTP
— E.g., Gmail, Yahoo mail, and Hotmail
* Reading e-mail
— Web pages display the contents of folders
— “GET” request to retrieve the various Web pages
* Sending e-mail
— User types text into a form and submits to server
— “POST” request to upload data to the server
L Server uses SMTP to deliver message to other servers

Conclusions

* Overlay networks

— Tunnels between host computers

— Build networks “on top” of the Internet

— Deploy new protocols and services
* Benefits of overlay networks

— Customization to the applications and users

— Incremental deployment of new technologies

— May perform better than the underlying network
* Precept: Distributed Hash Tables

10

