

COS 461: Computer Networks

Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Why (and How) Things Move

Handling Mobility

Three Examples

- Ethernet
 - MAC learning of the new location
- IP routing
 - Inject IP address(es) at new location
- Mobile IP
 - Stationary home agent directs traffic to new location

13

• MAC learning - Learn b1's location when b1 sends a frame - Soft state: timeout the cached information

Making Larger Ethernet Segments

- · Ethernet handles mobility
 - IP address and MAC address stay the same
 - Switches learn to route to the new location
- But, larger networks have multiple segments
 - Cannot retain your IP address as you move
- Solution: virtual local area networks (VLAN)
 - Logical Ethernet segment spanning a campus
 - E.g., interconnecting the WiFi access points

15

Pros and Cons

- Advantages
 - Seamless mobility, no changes to hosts or apps
 - No changes to MAC or IP addresses
- Disadvantages
 - Ethernet does not scale
 - Long paths, state per MAC address, flooding, ...
- Widely used approach in campus networks

16

Example #2: IP Routing • Node has a persistent address (e.g., 12.34.45.7) • Injected into routing protocol (e.g., OSPF)

Pros and Cons

Advantages

- Seamless mobility, no MAC or IP address changes
- Traffic follows an efficient path to new location

Disadvantages

- Does not scale to large number of mobile hosts
- More routing-protocol messages
- Larger routing tables to store smaller address blocks

19

Visited Network and Care-of Address Visited network: e.g., 79,129,13/24 Permanent address: remains constant (e.g., 128,119,40,186) Care-of-address: in visited network (e.g., 79,129,13,2) wide area network foreign agent: performs mobility functions for the mobile.

Pros and Cons • Advantages - Seamless to the remote end-point - No routing-protocol overhead • Disadvantages - Overhead of running home and foreign agents - Inefficient "triangle routing" (high "stretch") - Foreign agent sends "spoofed" IP source address

Directory Solutions

Change the mapping of name to address

25

Three Examples

• Ethernet

 Gratuitous ARP to change the MAC address associated with an IP address

Dynamic DNS

 DNS updates to change the IP address(es) associated with a domain name

Various recent proposed designs

 Updating the remote end-point (e.g., end host, edge switch) to use a new address

26

Pros and Cons

Advantages

- Seamless change from one MAC address to another

Disadvantages

- Works only within a single Ethernet subnet
- Scalability limitations of Ethernet

• Used in data-center networks

 But doesn't help with smart phones homed to multiple administrative domains

29

Example #2: Dynamic DNS Name: www.nbc.com IP: 1.2.3.4 Name: www.nbc.com IP: 5.6.7.8 Dynamically update DNS - Change the mapping of domain name to IP address - Future DNS requests get the new addres

Applications of Dynamic DNS

- Replicated services
 - Direct future requests to a different replica
 - E.g., for failover, load balancing, performance, etc.
- Services on dynamically-assigned IP addresses
 - Residential user with a dynamic IP address
 - Directs clients to the server's current address
- "Fast flux" in botnets
 - Hiding phishing and malware delivery servers
 - ... behind constantly changing IP addresses

31

Pros and Cons

- Advantages
 - No new infrastructure
 - Leverages existing DNS servers
- Disadvantages
 - Only helps for new connections
 - Overheads of updating DNS servers
 - Stymied by DNS caching

32

Example #3: Updating the End-Points

- Mobile node updates the remote end-point
 - Sends the remote end-point the new IP address
 - Allowing ongoing connection to continue
 - Can be used in conjunction with Dynamic DNS

33

Updating the Edge Switches

- Update the switches
 - Hosts retain their addresses
 - Switches rewrite the addresses, or encapsulate
 - Used in some data-center networks

. .

Pros and Cons

- Advantages
 - Scalability of hierarchical addressing
 - Efficiency of routing along short paths
- Disadvantages
 - Changes to the end host (e.g., apps, TCP, etc.)
 - ... or support from the edge switches
 - Difficulty when both end-points move at once
- Work in progress
 - Used in some data centers, recent standards/projects

35

Mobility Today

- · Limited network support for mobility
 - E.g., within a single Ethernet subnet
 - E.g., among base stations on a campus
- · Applications increasingly robust to mobility
 - Robust to changes in IP address, and disconnections
 - E.g., e-mail client contacting the e-mail server
 - \dots and allowing reading/writing while disconnected

36

Mobility Tomorrow

- Increasing demand for seamless IP mobility
 - E.g., continue a VoIP call while on the train
 - E.g., virtual machine migration within and between data centers
- Increasing integration of WiFi and cellular
 - E.g., multi-homed cell phones that can use both networks
 - E.g., servers with multiple interface cards
- Need better mobility & multi-homing solutions!

37

Conclusions

- Mobility
 - -Change is hard
 - Routing and directory solutions
 - Mobility is still a moving target... ☺
- Friday's precept: IP routers and assignment #2
- Midterm next week
 - Midterm next Wednesday during lecture time
 - In Frist 302, not in the lecture hall

38