

Routing Convergence

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Routing Changes • Topology changes: new route to the same place • Host mobility: route to a different place

Topology Changes

Two Types of Topology Changes

- Planned
 - Maintenance: shut down a node or link
 - Energy savings: shut down a node or link
 - Traffic engineering: change routing configuration
- Unplanned
 - Failure
 - E.g., fiber cut, faulty equipment, power outage, software bugs, ...

Detecting Topology Changes

- Beaconing
 - Periodic "hello" messages in both directions
 - Detect a failure after a few missed "hellos"

- Performance trade-offs
 - Detection delay
 - Overhead on link bandwidth and CPU
 - Likelihood of false detection

Routing Convergence: Link-State Routing

Convergence

- Control plane
 - All nodes have consistent information
- · Data plane
 - All nodes forward packets in a consistent way

Transient Disruptions

- · Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a "blackhole"
 - Depends on timeout for detecting lost hellos

Transient Disruptions

- · Inconsistent link-state database
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Convergence Delay

- · Sources of convergence delay
 - Detection latency
 - Updating control-plane information
 - Computing and install new forwarding tables
- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

.

Reducing Convergence Delay

- Faster detection
 - Smaller hello timers, better link-layer technologies
- · Faster control plane
 - Flooding immediately
 - Sending routing messages with high-priority
- Faster computation
 - Faster processors, and incremental computation
- · Faster forwarding-table update
 - Data structures supporting incremental updates

11

Slow Convergence in Distance-Vector Routing

12

Redefining Infinity

• Avoid "counting to infinity"

— By making "infinity" smaller!

• Routing Information Protocol (RIP)

— All links have cost 1

— Valid path distances of 1 through 15

— ... with 16 representing infinity

• Used mainly in small networks

Reducing Convergence Time With Path-Vector Routing (e.g., Border Gateway Protocol) Extension of distance-vector routing

 Support flexible routing policies
 Avoid count-to-infinity problem

 Key idea: advertise the entire path

 Distance vector: send distance metric per dest d
 Path vector: send the entire path for each dest d

 *d: path (2,1)**

 *d: path (1)**

Path-Vector Routing

Faster Loop Detection Node can easily detect a loop Look for its own node identifier in the path E.g., node 1 sees itself in the path "3, 2, 1" Node can simply discard paths with loops E.g., node 1 simply discards the advertisement "d: path (2,1)" "d: path (1)"

Path vector avoids count-to-infinity - But, ASes still must explore many alternate paths - ... to find the highest-ranked available path • Fortunately, in practice - Most popular destinations have stable BGP routes - Most instability lies in a few unpopular destinations • Still, lower BGP convergence delay is a goal - Can be tens of seconds to tens of minutes - High for important interactive applications

BGP Instability

Avoiding BGP Instability • Detecting conflicting policies - Computationally expensive - Requires too much cooperation • Detecting oscillations - Observing the repetitive BGP routing messages • Restricted routing policies and topologies - Policies based on business relationships

Customer-Provider Relationship

- Customer pays provider for access to Internet
 - Provider exports its customer routes to everybody
 - Customer exports provider routes only to its customers

Traffic to customer

T

Traffic from customer

Peer-Peer Relationship

- Peers exchange traffic between their customers
 - AS exports only customer routes to a peer
 - AS exports a peer's routes only to its customers

Traffic to/from the peer and its customers

Hierarchical AS Relationships

- Provider-customer graph is directed and acyclic
 - If u is a customer of v and v is a customer of w
 - ... then w is not a customer of u

Valid and Invalid Paths

Local Control, Global Stability

- Route export
 - Don't export routes learned from a peer or provider
 - ... to another peer or provider
- Global topology
 - Provider-customer relationship graph is acyclic
 - E.g., my customer's customer is not my provider
- Route selection
 - Prefer routes through customers
 - ... over routes through peers and providers
- Guaranteed to converge to unique, stable solution

Conclusion

- · The only constant is change
 - Planned topology and configuration changes
 - Unplanned failure and recovery
- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets
- · Routing instability
 - Permanent conflicts in routing policy
 - Leading to bi-stability or oscillation

36