Congestion

Michael Freedman

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Last Week: Discovery and Routing

Provides end-to-end connectivity, but
not necessarily good performance

link name
‘ session ’
| ‘path | address

Today: Congestion Control

What can the end-points do to collectively to
make good use of shared underlying resources?

link name
o session o
| .path | address

Distributed Resource Sharing

Congestion

* Best-effort network does not “block” calls
—So, they can easily become overloaded
— Congestion == “Load higher than capacity”

* Examples of congestion
— Link layer: Ethernet frame collisions

— Network layer: full IP packet buffers —> >

* Excess packets are simply dropped e

— And the sender can simply retransmit

Congestion Collapse

* Easily leads to congestion collapse
— Senders retransmit the lost packets
— Leading to even greater load
— ... and even more packet loss

Goodput “congestion Increase in load that
collapse” results in a decrease in
useful work done.

Load

Detect and Respond to Congestion

* What does the end host see?
* What can the end host change?

Detecting Congestion

* Link layer
—Carrier sense multiple access
—Seeing your own frame collide with others
* Network layer
—Observing end-to-end performance
—Packet delay or loss over the path

Responding to Congestion

* Upon detecting congestion

— Decrease the sending rate
* But, what if conditions change?

— If more bandwidth becomes available,

— ... unfortunate to keep sending at a low rate
* Upon not detecting congestion

— Increase sending rate, a little at a time

— See if packets get through

Ethernet Back-off Mechanism

. B

Carrier sense: % o HI

— Wait for link to be idle i vy

— If idle, start sending L?Efl %_» TR

. ol s g2
— If not, wait until idle BEENER

* Collision detection: listen while transmitting

— If collision: abort transmission, and send jam signal
Exponential back-off: wait before retransmitting
— Wait random time, exponentially larger per retry

TCP Congestion Control

» Additive increase, multiplicative decrease
— On packet loss, divide congestion window in half
— On success for last window, increase window linearly

wl T 41

halved

Why Exponential?

* Respond aggressively to bad news
— Congestion is (very) bad for everyone
— Need to react aggressively

* Examples:

— Ethernet: double retransmission timer
— TCP: divide sending rate in half

* Nice theoretical properties

— Makes efficient use of network resources

Congestion in a Drop-Tail FIFO Queue

e Access to the bandwidth: first-in first-out queue
— Packets transmitted in the order they arrive

TCP Congestion Control D/_\l* |—>

* Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

X | —

How it Looks to the End Host

Delay: Packet experiences high delay
* Loss: Packet gets dropped along path

TCP Congestion Window

* Each TCP sender maintains a congestion window
— Max number of bytes to have in transit (not yet ACK'd)

* Adapting the congestion window
* How does TCP sender learn this? — Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find right transfer rate

* Tradeoff
x | | > — Pro: avoids needing explicit network feedback

— Con: continually under- and over-shoots “right” rate

— Delay: Round-trip time estimate
—Loss: Timeout and/or duplicate acknowledgments

Additive Increase, Multiplicative Decrease Leads to the TCP “Sawtooth”

* How much to adapt?

— Additive increase: On success of last window of Window
data, increase window by 1 Max Segment Size (MSS)
— Multiplicative decrease: On loss of packet, divide Loss \
congestion window in half } { \
Much quicker to slow than speed up!

— Over-sized windows (causing loss) are much worse halved
than under-sized windows (causing lower thruput)

— AIMD: A necessary condition for stability of TCP

Receiver Window vs. Congestion Window

* Flow control

— Keep a fast sender from overwhelming a slow receiver
* Congestion control

— Keep a set of senders from overloading the network

 Different concepts, but similar mechanisms
— TCP flow control: receiver window
— TCP congestion control: congestion window
— Sender TCP window =
min { congestion window, receiver window }

Starting a New Flow

How Should a New Flow Start?

Start slow (a small CWND) to avoid overloading network
Window

Lo\ss \ \

halved

But, could take a long
time to get started!

“Slow Start” Phase

* Start with a small congestion window
— Initially, CWND is 1 MSS
— So, initial sending rate is MSS / RTT

* Could be pretty wasteful
— Might be much less than actual bandwidth
— Linear increase takes a long time to accelerate

* Slow-start phase (really “fast start”)
— Sender starts at a slow rate (hence the name)
— ... but increases rate exponentially until the first loss

22

Slow Start in Action

Double CWND per round-trip time

1 2 4 8
Spc _EH I i of o of o s o o o

Dest

Window

Slow Start and the TCP Sawtooth

|

halved

Exponential “slow start”

* TCP originally had no congestion control

— Source would start by sending entire receiver window
— Led to congestion collapse!
— “Slow start” is, comparatively, slower

Two Kinds of Loss in TCP

* Timeout
— Packet n is lost and detected via a timeout
— Blasting entire CWND would cause another burst
— Better to start over with a low CWND

* Triple duplicate ACK
— Packet n is lost, but packets n+1, n+2, etc. arrive
— Then, sender quickly resends packet n
— Do a multiplicative decrease and keep going

Repeating Slow Start After Timeout

Window .
timeout

/

X" Slow start until

reaching half of
previous cwnd.

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Repeating Slow Start After Idle Period
* Suppose a TCP connection goes idle for a while

 Eventually, the network conditions change
— Maybe many more flows are traversing the link

* Dangerous to start transmitting at the old rate
— Previously-idle TCP sender might blast network
— ... causing excessive congestion and packet loss

* So, some TCP implementations repeat slow start
— Slow-start restart after an idle period

Fairness

TCP Achieves a Notion of Fairness

* Effective utilization is not only goal
— We also want to be fair to various flows

» Simple definition: equal bandwidth shares
— N flows that each get 1/N of the bandwidth?

* But, what if flows traverse different paths?
— Result: bandwidth shared in proportion to RTT

K. nm;H | | ITIT

SN

What About Cheating?

* Some folks are more fair than others

— Running multiple TCP connections in parallel
(BitTorrent)

— Modifying the TCP implementation in the OS
* Some cloud services start TCP at > 1 MSS
— Use the User Datagram Protocol
* What is the impact
— Good guys slow down to make room for you
— You get an unfair share of the bandwidth

Preventing Cheating

* Possible solutions?

Conclusions
* Congestion is inevitable

— Routers detect cheating and drop excess packets?

— Per user/customer failness? — TCP actively tries to push the envelope

— Peer pressure? * Congestion can be handled

— Additive increase, multiplicative decrease

— Internet does not reserve resources in advance

— Slow start and slow-start restart
* Fundamental tensions
— Feedback from the network?
— Enforcement of “TCP friendly” behavior?

