Discovery

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Relationship Between Layers

link name
session

Discovery: Mapping Name to Address

link
session

Routing: Mapping Link to Path

link name
‘ session ’

address

Naming

What’s in a Name?

Human readable?

— If users interact with the names

Fixed length?

— If equipment processes at high speed
Large name space?

— If many nodes need unique names
Hierarchical names?

— If the system is very large and/or federated
Self-certifying?

— If preventing “spoofing” is important

Different Kinds of Names

Host name (e.g., www.cs.princeton.edu)

— Mnemonic, variable-length, appreciated by humans
— Hierarchical, based on organizations

IP address (e.g., 128.112.7.156)

— Numerical 32-bit address appreciated by routers

— Hierarchical, based on organizations and topology
MAC address (e.g., 00-15-C5-49-04-A9)

— Numerical 48-bit address appreciated by adapters
— Non-hierarchical, unrelated to network topology

Hierarchical Assignment Processes

* Host name: www.cs.princeton.edu
— Domain: registrar for each top-level domain (e.g., .edu)
— Host name: local administrator assigns to each host
* |IP addresses: 128.112.7.156
— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP
* MAC addresses: 00-15-C5-49-04-A9
— Blocks: assigned to vendors by the IEEE
— Adapters: assigned by the vendor from its block

Host Names vs. IP Addresses

Names are easier (for us!) to remember

— www.cnhn.com vs. 64.236.16.20

IP addresses can change underneath

— E.g., renumbering when changing providers
Name could map to multiple IP addresses

— www.cnn.com to multiple replicas of the Web site
Map to different addresses in different places
— E.g., to reduce latency, or return different content
Multiple names for the same address

—E.g., aliases like ee.mit.edu and cs.mit.edu

IP vs. MAC Addresses

* LANs designed for arbitrary network protocols

— Not just for IP (e.g., IPX, Appletalk, X.25, ...)

— Different LANs may have different addressing schemes
* A host may move to a new location

— So, cannot simply assign a static IP address

— Instead, must reconfigure the adapter
* Must identify the adapter during bootstrap

— Need to talk to the adapter to assign it an IP address

Discovery

Directories

* A key-value store
— Key: name, value: address(es)
— Answer queries: given name, return address(es)
* Caching the response
— Reuse the response, for a period of time
— Better performance and lower overhead
* Allow entries to change
— Updating the address(es) associated with a name
— Invalidating or expiring cached responses

Directory Design: Three Extremes

* Flood the query (e.g., ARP)

— The named node responds with its address

— But, high overhead in large networks
* Push data to all clients (/etc/hosts)

— All nodes store a full copy of the directory

— But, high overhead for many names and updates
* Central directory server

— All data and queries handled by one machine

— But, poor performance, scalability, and reliability

Directory Design: Distributed Solutions

* Hierarchical directory (e.g., DNS)
— Follow the hierarchy in the name space
— Distribute the directory, distribute the queries
— Enable decentralized updates to the directory

* Distributed Hash Table (e.g. P2P applications)
— Directory as a hash table with flat names
— Each directory node handles range of hash outputs
— Use hash to direct query to the directory node

Domain Name System (DNS)
Hierarchy

Domain Name System (DNS)
Properties of DNS

— Hierarchical name space divided into zones

— Distributed over a collection of DNS servers
* Hierarchy of DNS servers

— Root servers

— Top-level domain (TLD) servers
— Authoritative DNS servers

* Performing the translations
— Local DNS servers and client resolvers

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
e Labeled A through M

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles)

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London (also Amsterdam, Frankfurt)
H ARL Aberdeen, MD

J Verisign, (11 i !

E NASA Mt View, CA (plus 3 other locations)
F Internet Software C. Pals

Alto, CA (and 17 other

locations) ~—___J

m WIDE Tokyo

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

17

TLD and Authoritative DNS Servers

* Top-level domain (TLD) servers
— Generic domains (e.g., com, org, edu)
— Country domains (e.g., uk, fr, ca, jp)
— Managed professionally (e.g., Educause for “edu”)
* Authoritative DNS servers
— Provide public records for hosts at an organization
— For the organization’s servers (e.g., Web and mail)
— Can be maintained locally or by a service provider

Distributed Hierarchical Database
unnamed root

()

?ﬂ’lc domains country domains

my.east.bar.edu

usr.cam.ac.uk

DNS Queries

Using DNS

* Local DNS server (“default name server”)
— Usually near the end hosts who use it

— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn the server via DHCP

* Client application

— Extract server name (e.g., from the URL)

— Do gethostbyname() or getaddrinfo() to get address
* Server application

— Extract client IP address from socket

— Optional gethostbyaddr() to translate into name

Recursive vs. Iterative Queries

root DNS server

2
/ TLD DNS server
4

- E.g., request 1 local DNS server 3’ .—ﬁ
and response 8 dns.poly.edu 5

* Recursive query

— Ask server to get
answer for you

* Iterative query \
— Ask server who e T8z
to ask next i

authoritative DNS server
dns.cs.umass.edu

—E.g., all other request-

. requesting host
response pairs

cis.poly.edu fi—.O%

23

Exa m ple root DNS server

2
3
TLD DNS server
4 e
local DNS server 3’
dns.poly.edu 5
Host at cis.poly.edu 6
7
1|8 Vv
wants IP address for 3’
gaia.cs.umass.edu

authoritative DNS server

dns.cs.umass.edu
requesting host

cis.poly.edu @

gaia.cs.umass.edu

22

DNS Caching

DNS Caching

root DNS server

2
3
/ TLD DNS server
i 4
* Caching to reduce local DNS server 3’ ——_‘@
overhead and delay dns.poly.edu 5
— Small # of top-level servers,
that change rarely
7\\6
— Popular sites visited often 1118 3"
? @
' Where to CaChe : authoritative DNS server

dns.cs.umass.edu

DNS query latency

— E.g., 1 sec latency before
starting a download

N

_

— Local DNS server requesting host
— Browser cis.poly.edu @

Setting the Time To Live (TTL)
* TTL trade-offs

— Small TTL: fast response to change
— Large TTL: higher cache hit rate
* Following the hierarchy
— Top of the hierarchy: days or weeks
— Bottom of the hierarchy: seconds to hours
* Tension in practice
— CDNs set low TTLs for load balancing and failover
— Browsers cache for 15-60 seconds

DNS Protocol

DNS Cache Consistency

* Cache consistency
— Ensuring cached data is up to date
* DNS design considerations
— Cached data is “read only”
— Explicit invalidation would be expensive
* Avoiding stale information
— Responses include a “time to live” (TTL) field
— Delete the cached entry after TTL expires

Negative Caching

* Broken domain names are slow to resolve
— Misspellings like www.cnn.comm and www.cnnn.com
— These can take a long time to fail the first time
* Remember things that don’t work
— Good to remember that they don’t work
— ... so the failure takes less time in the future
e But don’t remember for too long
— Use a time-to-live to expire

28

Database of Resource Records (RRs)

‘RR format: (name, value, type, ttl) ‘

* Type=A * Type = CNAME
— name is hostname

— value is IP address

— name is alias name for some
“canonical” (the real) name

« Tvpoe = NS www.ibm.com is really
ype = servereast.backup2.ibm.com
— name is domain (e.g. . .
(eg — value is canonical name
foo.com)

¢ Type = MX
— value is name of mail server
associated with name

— value is hostname of
authoritative name
server for this domain

Inserting Resource Records into DNS

* Register foobar.com at Network Solutions

— Provide registrar with names and IP addresses of your
authoritative name server (primary & secondary)

— Registrar inserts two RRs into the .com TLD server:
* (foobar.com, dns1.foobar.com, NS)
* (dnsl.foobar.com, 212.212.212.1, A)
* Put in authoritative server dns1.foobar.com
— Type A record for www.foobar.com
— Type MX record for foobar.com

DNS Protocol

identification flags

¢ |dentification:
— 16 bit # for query
— Response uses same #

number of questions number of answer RRs

° FlagS: questions
(variable number of questions)

— Query or reply

— Recursion desired 1
(variable number of resource records)

— Recursion available

— Reply is authoritative

o
(variable number of resource records)

additional information
(variable number of resource records)

12 bytes

number of authority RRs | number of additional RRs.

DNS Reliability

* DNS servers are replicated
— Name service available if at least one replica is up
— Queries can be load balanced between replicas
* UDP used for queries
— Need reliability: must implement this on top of UDP
* Try alternate servers on timeout
— Exponential backoff when retrying same server
* Same identifier for all queries
— Don’t care which server responds

Learning Your Local DNS Server

How To Bootstrap an End Host?

* What local DNS server to use?
What IP address the host should use?
* How to send packets to remote destinations?

??? 1.2.3.7 1.2.3.156
host

1.2.3.0/24

Avoiding Manual Configuration

* Dynamic Host Configuration Protocol (DHCP)
— End host learns how to send packets
— Learn IP address, DNS servers, and gateway

* Address Resolution Protocol (ARP)
— Others learn how to send packets to the end host
— Learn mapping between IP & interface addresses

??? 1.2.3.7 1.2.3.156
host

1.2.3.0/24 5.6.7.0/24

Key Ideas in Both Protocols

* Broadcasting: when in doubt, shout!
— Broadcast query to all hosts in local-area-network
* Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your address & other host’s addresses
* Soft state: ... but eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information

Bootstrapping Problem

* Host doesn’t have an IP address yet

— So, host doesn’t know what source to use
* Host doesn’t know who to ask for an IP address
— So, host doesn’t know what destination to use
Solution: discover a server who can help
— Broadcast a DHCP server-discovery message
— Server sends a DHCP “offer” offering an address

DHCP server

Response from the DHCP Server

* DHCP “offer message” from the server

— Configuration parameters (proposed IP address,
mask, gateway router, DNS server, ...)

— Lease time (the time the information remains valid)

* Multiple servers may respond with an offer
— The client decides which offer to accept
* Client sends a DHCP request echoing the parameters

— The DHCP server responds with an ACK to confirm
* And the other servers see they were not chosen

Dynamic Host Configuration Protocol

QNMH ke,

= = de’SCOVer
(broadcast)
G

arriving p offef DHCP server
client 233.1.25
D
(bHCP "®ques;
"O20casy

D\-\CP Ac\‘

Deciding What IP Address to Offer

Static allocation

— All parameters are statically configured in the server
—E.g., a dedicated IP address for each MAC address

— Makes it easy to track a host over time

Dynamic allocation

— Server maintains a pool of available addresses

— ... and assigns them to hosts on demand

— Enables more efficient use of the pool of addresses

Soft State: Refresh or Forget

* Why is a lease time necessary?

— Client can release the IP address (DHCP RELEASE)

* E.g., “ipconfig /release” at the command line

* E.g., clean shutdown of the computer
— But, the host might not release the address

* E.g., the host crashes (blue screen of death!), buggy client
— Don’t want the address to be allocated forever

* Performance trade-offs

— Short lease: returns inactive addresses quickly
— Long lease: avoids overhead of frequent renewals

So, Now the Host Knows Things

* IP address

* Mask

* Gateway router
* DNS server

* And can send packets to other IP addresses
— How to learn the MAC address of the destination?

Sending Packets Over a Link

1.2.3.53 1.2.3.156

IP packet

11.2,9,59
1.2.3.156

* Adapters only understand MAC addresses
— Translate the destination IP address to MAC address
— Encapsulate the IP packet inside a link-level frame

Address Resolution Protocol Table

Every node maintains an ARP table

— (IP address, MAC address) pair

Consult the table when sending a packet

— Map destination IP to destination MAC address

— Encapsulate and transmit the data packet

But, what if the IP address is not in the table?

— Sender broadcasts: “Who has IP address 1.2.3.156?”
— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches the result in its ARP table

Conclusion

* Discovery

— Mapping a name at the upper layer

— ... to an address at the lower layer
* Domain Name System (DNS)

— Hierarchical names, hierarchical directory

— Query-response protocol with caching

— Time-To-Live to expire stale cached responses
* Next time: routing

