Transport Layer

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

IP Protocol Stack: Key Abstractions

Application

Applications

Transport [EEIElJ[EREE) Messages
W\(3a:)s @l Best-effort global packet delivery

i@ Best-effort local packet delivery

* Transport layer is where we “pay the piper”
— Provide applications with good abstractions
— Without support or feedback from the network

Transport Protocols

* Logical communication between processes
—Sender divides a message into segments
—Receiver reassembles segments into message

* Transport services
— (De)multiplexing packets
—Detecting corrupted data
—Optionally: reliable delivery, flow control, ...

Two Basic Transport Features

* Demultiplexing: port numbers
Server host 128.2.194.242

Client host Service request for

128.2.194.242:80 Web server
(i-e., the Web server) (port 80)

os

Echo server
(port7)

* Error detection: checksums

IpP payload

detect corruption

User Datagram Protocol (UDP)

Datagram messaging service

— Demultiplexing: port numbers

— Detecting corruption: checksum

Lightweight communication between processes
— Send and receive messages

— Avoid overhead of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Advantages of UDP

Fine-grain control

— UDP sends as soon as the application writes
* No connection set-up delay

— UDP sends without establishing a connection
* No connection state

— No buffers, parameters, sequence #s, etc.
* Small header overhead

— UDP header is only eight-bytes long

Popular Applications That Use UDP

* Multimedia streaming
— Retransmitting packets is not always worthwhile
— E.g., phone calls, video conferencing, gaming, IPTV
* Simple query-response protocols
— Overhead of connection establishment is overkill
— E.g., Domain Name System (DNS), DHCP, etc.

“Address for www.cnn.com?”

* Stream-of-bytes service * Connection oriented

* Reliable, in-order delivery * Flow control

Transmission Control Protocol (TCP)

— Sends and receives a — Explicit set-up and tear-
stream of bytes down of TCP connection

— Prevent overflow of the
receiver’s buffer space

— Corruption: checksums
— Detect loss/reordering:

sequence numbers » Congestion control
— Reliable delivery: — Adapt to network

acknowledgments and congestion for the

retransmissions greater good

Breaking a Stream of Bytes
into TCP Segments

TCP “Stream of Bytes” Service

Host A

m

wmm

aﬁNu

AN

]

wmm

= Nw

”

...Emulated Using TCP “Segments

Host A

Segment sent when:
Tep Dﬂ'fﬂ 1. Segment full (Max Segment Size),

2 No'r full, but times out, or
ne ’ D app a l

Host B

TCP Segment

IP Data
‘ TCP Data (segment) ‘TCP Hdr ‘ IP Hdr >

* |P packet
— No bigger than Maximum Transmission Unit (MTU)

— E.g., up to 1500 bytes on an Ethernet link
e TCP packet
— IP packet with a TCP header and data inside
— TCP header is typically 20 bytes long
* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream

Sequence Number

Host A

ISN (initial sequence number)

Sequence
number = 15t
byte

5]
=

Host B

Initial Sequence Number (ISN)

* Sequence number for the very first byte
—E.g., Why not a de facto ISN of 0?

* Practical issue: reuse of port numbers
— Port numbers must (eventually) get used again
— ... and an old packet may still be in flight
— ... and associated with the new connection

* So, TCP must change the ISN over time
— Set from a 32-bit clock that ticks every 4 microsec
— ... which wraps around once every 4.55 hours!

Reliable Delivery on a Lossy
Channel With Bit Errors

Challenges of Reliable Data Transfer

* Over a perfectly reliable channel

— Easy: sender sends, and receiver receives
* Over a channel with bit errors

— Receiver detects errors and requests retransmission
* Over a lossy channel with bit errors

— Some data are missing, and others corrupted

— Receiver cannot always detect loss

Over a channel that may reorder packets
— Receiver cannot distinguish loss from out-of-order

An Analogy

* Alice and Bob are talking

— What if Alice couldn’t understand Bob? @ -
,j -

— Bob asks Alice to repeat what she said
* What if Bob hasn’t heard Alice for a while?

— Is Alice just being quiet? Has she lost reception?

— How long should Bob just keep on talking?

— Maybe Alice should periodically say “uh huh”

— ... or Bob should ask “Can you hear me now?” ©

Take-Aways from the Example

* Acknowledgments from receiver
— Positive: “okay” or “uh huh” or “ACK”
— Negative: “please repeat that” or “NACK”
* Retransmission by the sender
— After not receiving an “ACK”
— After receiving a “NACK”
* Timeout by the sender (“stop and wait”)
— Don’t wait forever without some acknowledgment

TCP Support for Reliable Delivery

- Detect bit errors: checksum
- Used to detect corrupted data at the receiver
- ...leading the receiver to drop the packet
- Detect missing data: sequence number
- Used to detect a gap in the stream of bytes
— ... and for putting the data back in order
- Recover from lost data: retransmission
- Sender retransmits lost or corrupted data
- Two main ways to detect lost packets

TCP Acknowledgments

Host A

ISN (initial sequence number)

Sequence number
= 15t byt
vie ACK sequence

number = next
Host B

expected byte

Automatic Repeat reQuest (ARQ)

¢ ACK and timeouts

— Receiver sends ACK when

.) Sender Receiver
it receives packet

P.

— i o | ——8Cki
Send(_er waits for ACK 5T
and times out g

Fi [Aok

* Simplest ARQ protocol

— Stop and wait Time

— Send a packet, stop and

wait until ACK arrives

Flow Control:
TCP Sliding Window

Motivation for Sliding Window

* Stop-and-wait is inefficient
— Only one TCP segment is “in flight” at a time
— Especially bad for high “delay-bandwidth product”

ﬂ@ ban%
0% O T

delay

Numerical Example

* 1.5 Mbps link with 45 msec round-trip time (RTT)
— Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)
* Sender can send at most one packet per RTT
— Assuming a segment size of 1 KB (8 Kbits)
— 8 Kbits/segment at 45 msec/segment =» 182 Kbps
— That’s just one-eighth of the 1.5 Mbps link capacity

p 2] .

24

Sliding Window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver
— ... though not too far ahead

Sending process

Tee Last byte written TCP Last byte read

e] T

Last byte ACKed X Next byte expected [
Last byte sent Last byte received

Receiver Buffering

* Receive window size
— Amount that can be sent without acknowledgment
— Receiver must be able to store this amount of data
* Receiver tells the sender the window
— Tells the sender the amount of free space left

Window Size
Data ACK'd Outstanding Data OK Data not OK
Un-ack'd data to send to send yet

Optimizing Retransmissions

Reasons for Retransmission

| Packet | ~Packet -{~Packet
§§ W §i \ §3 \
o} o @ NS
£! £! ACK £! O
: ; ac)
. PaCket - Packe[: kot
=i —==et_| 51 —==et__| 5
£ | At — E | AE— S8
ACK lost Early timeout
Packet lost DUPLICATE DUPLICATE
PACKET PACKETS
2

How Long Should Sender Wait?

* Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions
— Too long: excessive delays when packet lost
* TCP sets timeout as a function of the RTT
— Expect ACK to arrive after an “round-trip time”
— ... plus a fudge factor to account for queuing
e But, how does the sender know the RTT?
— Running average of delay to receive an ACK

29

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

)

7 250

RTT (millsecond

150

100

time (seconnds)

[—— SampleRTT —=— Estimated RTT

Still, Timeouts are Inefficient

sender receiver
send pktO \
rev pktQ
send pkt1 sonG ACKO
sendpii2 —__ dgss SR Ak
send pki3
(wait) rev pkt3, discard
" send ACKI
rcv ACKO
send pkt4
rcv pkf4, discard
S'gr‘;(fgk‘fg — < SonaACKl
rcv pktb, discard
pkt2 timeout N SohBACK]
send pkt2 x’
send pkt3 rcv pki2, deliver
send pkt4

send ACK2
send pktb5 rcv pkt3, deliver
\ send ACK3

Fast Retransmission

When packet n is lost...

— ... packets n+1, n+2, and so on may get through
Exploit the ACKs of these packets

— ACK says receiver is still awaiting nth packet

— Duplicate ACKs suggest later packets arrived

— Sender uses “duplicate ACKs” as a hint

Fast retransmission

— Retransmit after “triple duplicate ACK”

Effectiveness of Fast Retransmit

* When does Fast Retransmit work best?
—High likelihood of many packets in flight
—Long data transfers, large window size, ...

* Implications for Web traffic
—Most Web transfers are short (e.g., 10 packets)

* So, often there aren’t many packets in flight
—Making fast retransmit is less likely to “kick in”
* Forcing users to click “reload” more often... ©

Starting and Ending a
Connection:
TCP Handshakes

Establishing a TCP Connection

Each host tells
its ISN to the
other host.

* Three-way handshake to establish connection
— Host A sends a SYN (open) to the host B
— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port ‘ Destination port

Sequence number

Flags: SYN

FIN Acknowledgment

RST Heren‘ 0 ‘ Flags | Advertised window
PSH

URG Checksum Urgent pointer
ACK

Options (variable)

Data

Step 1: A’s Initial SYN Packet

‘ A's port ‘ B’s port
A’s Initial Sequence Number
Flags: EIT\IN Acknowledgment
RST 20 ‘ 0 ‘ Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK Options (variable)

A tells B it wants to open a connection...

Step 2: B’s SYN-ACK Packet

‘ B’s port ‘ A's port

B’s Initial Sequence Number

Flags: SYN

FIN A's ISN plus 1

RST 20 ‘ 0 ‘ Flags | Advertised window
PSH

URG Checksum Urgent pointer
ACK Options (variable)

B tells A it accepts, and is ready to hear the next byte...
... upon receiving this packet, A can start sending data

Step 3: A’s ACK of the SYN-ACK

‘ A's port ‘ B’s port

Sequence number

Flags: SYN

FIN B’s ISN plus 1
RST 20 ‘ 0 ‘ Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK . 5

Options (variable)

A tells B it is okay to start sending
... upon receiving this packet, B can start sending data

39

What if the SYN Packet Gets Lost?

* Suppose the SYN packet gets lost

— Packet is lost inside the network, or

— Server rejects the packet (e.g., listen queue is full)
* Eventually, no SYN-ACK arrives

— Sender sets a timer and wait for the SYN-ACK

— ... and retransmits the SYN if needed
* How should the TCP sender set the timer?

— Sender has no idea how far away the receiver is

— Some TCPs use a default of 3 or 6 seconds

SYN Loss and Web Downloads

User clicks on a hypertext link

— Browser creates a socket and does a “connect”
— The “connect” triggers the OS to transmit a SYN
If the SYN is lost...

— The 3-6 seconds of delay is very long

— The impatient user may click “reload”

User triggers an “abort” of the “connect”

— Browser “connects” on a new socket

— Essentially, forces a fast send of a new SYN!

Tearing Down the Connection

B
A
Z Y = > zl \Z
g (o)
5 78 2§ \2
'ﬁ L)
A

time ——>

OV NAS
NE!

g
<

* Closing (each end of) the connection
— Finish (FIN) to close and receive remaining bytes
— And other host sends a FIN ACK to acknowledge
— Reset (RST) to close and not receive remaining bytes

Sending/Receiving the FIN Packet

* Sending a FIN: close() .

— Process is done sending
data via the socket

— Process invokes “close()”
to close the socket

— Once TCP has sent all
the outstanding bytes...

—...then TCP sends a FIN

Receiving a FIN: EOF
— Process is reading

data from the socket
— Eventually, the

attempt to read
returns an EOF

Conclusions

* Transport protocols

— Multiplexing and demultiplexing
— Checksum-based error detection
— Sequence numbers

— Retransmission

— Window-based flow control

* Precept on Friday

— Application-layer protocols: HTTP
— HTTP proxy assignment

