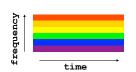


Network Layer

Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

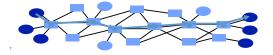
Best-Effort Global Packet Delivery


Circuit Switching

- · Source establishes connection
 - Reserve resources along hops in the path
- Source sends data
 - Transmit data over the established connection
- Source tears down connection
 - Free the resources for future connections

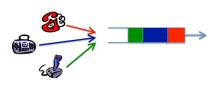
Circuit Switching: Static Allocation

- Time-division
 - Each circuit allocated certain time slots
 - time
- Frequency-division
 - Each circuit allocated certain frequencies


.

Circuit Switching: Pros and Cons

- Advantages
 - Predictable performance
 - Reliable, in-order delivery
 - -Simple forwarding
 - No overhead for packet headers
- Disadvantages
 - -Wasted bandwidth
 - Blocked connections
 - Connection set-up delay
 - Per-connection state inside the network


Packet Switching

- · Message divided into packets
 - Header identifies the destination address
- · Packets travel separately through the network
 - Forwarding based on the destination address
 - Packets may be buffered temporarily
- · Destination reconstructs the message

Packet Switching: Statistical Multiplexing

- · Data traffic is bursty
 - Telnet, email, Web browsing, ...
- · Avoid wasting bandwidth
 - One host can send more when others are idle

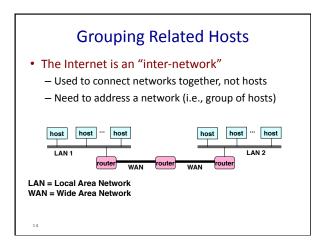
Best Effort

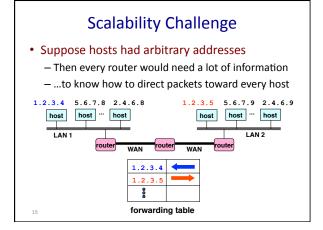
- Best-effort delivery
 - Packets may be lost
 - Packets may be corrupted
 - Packets may be delivered out of order

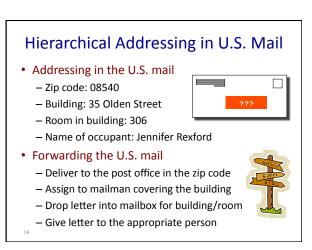
Best Effort: Celebrating Simplicity

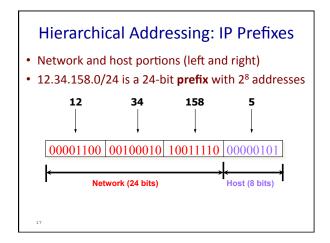
- · Never having to say you're sorry...
 - Don't reserve bandwidth and memory
 - Don't do error detection and correction
 - Don't remember from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- · Easier to support on many kinds of links
 - Important for *inter*connecting different networks

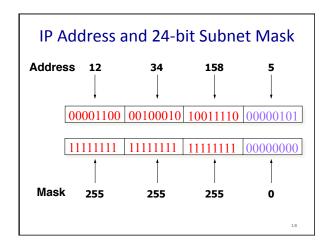
10

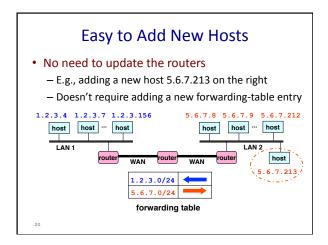

Best-Effort: Good Enough?


- Packet loss and delay
 - Sender can resend
- Packet corruption
 - Receiver can detect, and sender can resend
- Out-of-order delivery
 - Receiver can put the data back in order
- Packets follow different paths
 - Doesn't matter
- · Network failure
 - Drop the packet
- Network congestion
 - Drop the packet


11


Network Addresses





History of IP Address Allocation

21

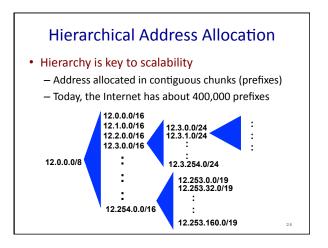
Classful Addressing

- In the olden days, only fixed allocation sizes
 - Class A: 0*
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - Class B: 10*
 - Large /16 blocks (e.g,. Princeton has 128.112.0.0/16)
 - Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - Class D: 1110* for multicast groups
 - Class E: 11110* reserved for future use
- This is why folks use dotted-quad notation!

Classless Inter-Domain Routing (CIDR)

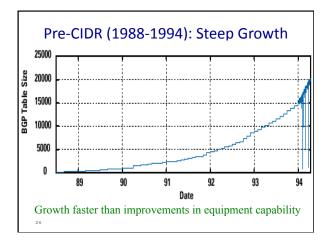
Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

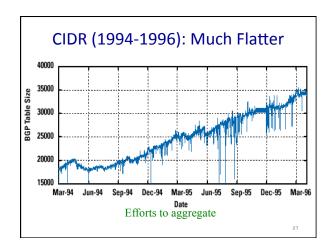
IP Address: 12.4.0.0 IP Mask: 255.254.0.0

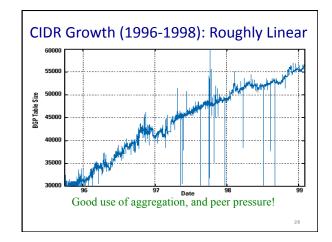

Address

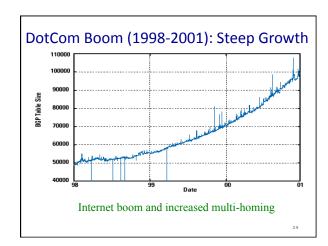
00001100 00000100 00000000 00000000

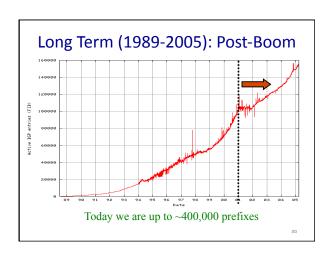
Mask

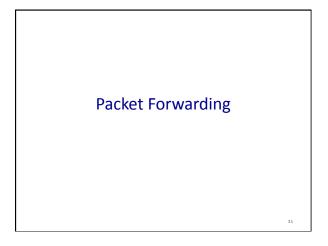

11111111 11111110 00000000 00000000

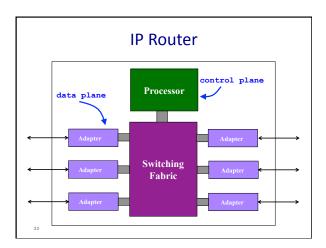

Written as 12.4.0.0/15

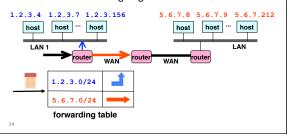



Obtaining a Block of Addresses


- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Allocates large blocks to Regional Internet Registries
- Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates to ISPs and large institutions
- Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

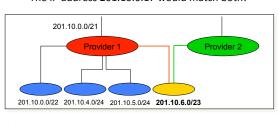




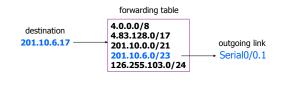

Hop-by-Hop Packet Forwarding

- · Each router has a forwarding table
 - Maps destination address to outgoing interface
- Upon receiving a packet
 - Inspect the destination address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats

33


Separate Forwarding Entry Per Prefix

- · Prefix-based forwarding
 - Map the destination address to matching prefix
 - Forward to the outgoing interface

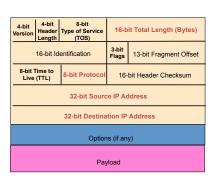

CIDR Makes Packet Forwarding Harder

- Forwarding table may have many matches
 - E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

Longest Prefix Match Forwarding

- · Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

Creating a Forwarding Table


- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
- That is where the control plane comes in
 - Routing protocols

37

IP Packet Format

38

IP Packet Structure

IP Header: Version, Length, ToS

- Version number (4 bits)
 - Necessary to know what other fields to expect
 - Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- Header length (4 bits)
 - Number of 32-bit words in the header
 - Typically "5" (for a 20-byte IPv4 header)
 - Can be more when "IP options" are used
- Type-of-Service (8 bits)
 - Allow different packets to be treated differently
 - Low delay for audio, high bandwidth for bulk transfer

IP Header: Length, Fragments, TTL

- Total length (16 bits)
 - Number of bytes in the packet
 - Max size is 63,535 bytes (216 -1)
 - $\dots though \ most \ links \ impose \ smaller \ limits$
- Fragmentation information (32 bits)
 - Supports dividing a large IP packet into fragments
 - ... in case a link cannot handle a large IP packet
- Time-To-Live (8 bits)
 - Used to identify packets stuck in forwarding loops
 - ... and eventually discard them from the network

IP Header: Transport Protocol

- Protocol (8 bits)
 - Identifies the higher-level protocol
 - E.g., "6" for the Transmission Control Protocol (TCP)
 - E.g., "17" for the User Datagram Protocol (UDP)
 - Important for demultiplexing at receiving host
 - Indicates what kind of header to expect next

protocol=6 protocol=17
IP header IP header
TCP header UDP header

IP Header: Header Checksum

- Checksum (16 bits)
 - Sum of all 16-bit words in the header
 - If header bits are corrupted, checksum won't match
 - Receiving discards corrupted packets

43

IP Header: To and From Addresses

- Destination IP address (32 bits)
 - Unique identifier for the receiving host
 - Allows each node to make forwarding decisions
- Source IP address (32 bits)
 - Unique identifier for the sending host
 - Recipient can decide whether to accept packet
 - Enables recipient to send a reply back to source

44

Conclusion

- · Best-effort global packet delivery
 - Simple end-to-end abstraction
 - Enables higher-level abstractions on top
 - Doesn't rely on much from the links below
- IP addressing and forwarding
 - Hierarchy for scalability and decentralized control
 - Allocation of IP prefixes
 - Longest prefix match forwarding
- Next time: transport layer