

Links

Jennifer Rexford

COS 461: Computer Networks

Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Course Announcements

- Get a Piazza account
 - http://piazza.com/class#spring2012/cos461
- See assignment #0 on socket programming
 - Posted on the course Web site
 - Due 11:59pm Thu Feb 16
 - Counts in course participation
- Friday precepts
 - P01: 10-10:50am in Friend 109 (Rob Kiefer)
 - P02: 11-11:50am in Friend 109 (Peng Sun)
 - P02A: 11-11:50am in Friend 108 (Xiaozhou Li)

Link = Medium + Adapters

Adaptors Communicating | packet | link layer protocol | packet | | sending adapter | adapter receiving node | | Sending side | Receiving side | | Encapsulates packet | in a frame | Control, etc. | | Adds error checking | Extracts datagram and passes to receiving node |

Addresses

Medium Access Control Address

- MAC address (e.g., 00-15-C5-49-04-A9)
 - Numerical address used within a link
 - Unique, hard-coded in the adapter when it is built
 - Flat name space of 48 bits
- · Hierarchical allocation
 - Blocks: assigned to vendors (e.g., Dell) by the IEEE
 - Adapters: assigned by the vendor from its block
- Broadcast address (i.e., FF-FF-FF-FF)
 - Send the frame to all adapters

11

As an Aside: Promiscuous Mode

- · Normal adapter: receives frames sent to
 - The local MAC address
 - Broadcast address FF-FF-FF-FF-FF
- Promiscuous mode
 - Receive everything, independent of destination MAC
- Useful for packet sniffing
 - Network monitoring
 - E.g., wireshark, tcpdump

Why Not Just Use IP Addresses?

- Links can support any network protocol
 - Not just for IP (e.g., IPX, Appletalk, X.25, ...)
 - Different addresses on different kinds of links
- An adapter may move to a new location
 - So, cannot simply assign a static IP address
 - Instead, must reconfigure the adapter's IP address
- Must identify the adapter during bootstrap
 - Need to talk to the adapter to assign it an IP address

Like Human Conversation...

- Carrier sense
 - Listen before speaking
 - ...and don't interrupt!
- · Collision detection
 - Detect simultaneous talking
 - ... and shut up!
- Random access
 - Wait for a random period of time
 - ... before trying to talk again!

Please Wait...

CSMA/CD Collision Detection

- Detect collision
 - Abort transmission
 - Jam the link
- · Wait random time
 - Transmit again
- · Hard in wireless
 - Must receive data while transmitting

21

Comparing the Three Approaches

- Channel partitioning
 - Efficient and fair at high load
 - Inefficient at low load
- · "Taking turns"
 - Eliminates empty slots without collisions
 - Vulnerable to failures (e.g. lost token)
- · Random access
 - Efficient at low load
 - Collision overhead at high load

2

Ethernet

Ethernet

- · Dominant wired LAN technology
- · First widely used LAN technology
- Kept up with speed race: 10 Mbps 40 Gbps

Metcalfe's Ethernet sketch

Ethernet Uses CSMA/CD

- Carrier Sense: wait for link to be idle
 - Channel idle: start transmitting
 - Channel busy: wait until idle
- · Collision Detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission, and send jam signal
- · Random Access: exponential back-off
 - After collision, wait random time before trying again
 - After mth collision, choose K randomly from {0, ..., 2^m-1}
 - ... and wait for K*512 bit times before trying again

Limitations on Ethernet Length

- · Latency depends on physical length of link
 - Time to propagate a packet from one end to other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - ... so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
- But A doesn't see collision till t+2d

Limitations on Ethernet Length

- · A needs to wait for time 2d to detect collision
- So, A should keep transmitting during this period
 - ... and keep an eye out for a possible collision
- · Imposes restrictions on Ethernet
 - Maximum length of the wire: 2500 meters
 - Minimum length of the packet: 512 bits (64 bytes)

Ethernet Frame Structure

· Sending adapter encapsulates packet in frame

- Preamble: synchronization
 - Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates

28

Ethernet Frame Structure

- Addresses: source and destination MAC addresses
 - Adaptor passes frame to network-level protocol
 - If destination is local MAC address or broadcast address
 - Otherwise, adapter discards frame
- Type: indicates the higher layer protocol
 - Usually IP
 - But also Novell IPX, AppleTalk, ...
- CRC: cyclic redundancy check

Unreliable, Connectionless Service

- Connectionless
 - No handshaking between send and receive adapter
- Unreliable
 - Receiving adapter doesn't send ACKs or NACKs
 - Packets passed to network layer can have gaps
 - Gaps can be filled by transport protocol (e.g., TCP)
 - Otherwise, the application will see the gaps

Hubs and Switches

Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals
 - Transmits an amplified copy

Physical Layer: Hubs

- · Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- · Very similar to repeaters
 - Also operates at the physical layer

Limitations of Repeaters and Hubs

- · One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
- · Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - Can't interconnect between different rates/formats
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

34

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate segment
- Each segment can carry its own traffic

Link Layer: Switches

- Typically connects individual computers
 - $-\,\mbox{\mbox{\sc A}}$ switch is essentially the same as a bridge
 - ... though typically used to connect hosts
- Supports concurrent communication
 - Host A can talk to C, while B talks to D

Bridges/Switches: Traffic Isolation

- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Advantages Over Hubs/Repeaters

- · Only forwards frames as needed
 - Avoid unnecessary load on segments
- · Wider geographic span
 - Separate segments allow longer distances
- Improves privacy
 - Hosts can "snoop" traffic traversing their segment
 - ... but not all the rest of the traffic
- · Can join segments using different technologies

38

Self Learning: Building the Table

- · When a frame arrives
 - Inspect the source MAC address
 - Associate the address with the incoming interface
 - Store the mapping in the switch table
 - Use a timer to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won't happen very often!

When in doubt, a lashout!

Summary: Multiple Layers

- · Different devices switch different things
 - Network layer: packets (routers)
 - Link layer: frames (bridges and switches)
 - Physical layer: electrical signals (repeaters and hubs)

Conclusion

- Links
 - Connect two or more network adapters
 - ... each with a unique address
 - ... over a shared communication medium
- Coming next
 - Friday: "links" between application processes
 - Monday: network layer (IP)
- · Get started
 - On assignment #0 on socket programming

4.2