How to streamline your life (lessons from computer architecture).

COS 116, Spring 2012
Adam Finkelstein
Greatly simplified view of modern CPUs.

Program (in binary) stored in memory

- Memory Registers
- Instruction Pointer
- arithmetic and Logic Unit (ALU)
- Control FSM
- Lots of Custom Hardware

RAM
Memory Performance
CPU-Z 1.30 Latency (Cycles)

Cycles

Clock Speed

3000+ Value
3000+ OCZ
3200+ Value
3200+ OCZ

[Jarred Walton]
Problem:
Retrieval from memory is relatively slow.

Solution:
“Cache”

[Image of Intel processor specifications]
the tired librarian

- reserves

- 1000 checkouts or returns per day
- Distance covered:
 \[100 \times 1000 = 100,000 \text{ feet} \sim 20 \text{ miles}\]
“80-20 rule”

- “Pareto principle” Pareto [1906], Juran [1941]
- 80% of wealth held by 20% of the people
- 80% of work done by 20% of organization
- 80% of sales come from 20% of the clients
- 80% of computer crashes from 20% of bugs
- 80% of librarian work comes from 20% of books
- 80% of fetches are for 20% of computer memory
better arrangement

- Distance covered:
 $20\% \times (100 \times 1000) + 80\% \times (10 \times 1000) = 28,000 \text{ feet} \sim 5 \text{ miles}$
even better arrangement

reserves

shelf with 20% most popular books

100 ft

10 ft

top 4% (0 ft)
memory cache hierarchy
memory cache hierarchy
memory cache hierarchy
memory cache hierarchy
Why this Organization?

- Speed vs cost of various memories
 (as of a few years ago)

<table>
<thead>
<tr>
<th></th>
<th>Cost: $ / GB</th>
<th>Speed: GB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard drive</td>
<td>0.10</td>
<td>0.1</td>
</tr>
<tr>
<td>Flash (e.g., SSD, USB stick)</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>RAM</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>On-chip memory for CPU (L2 Cache)</td>
<td>40000</td>
<td>20</td>
</tr>
</tbody>
</table>
Cache benefit

- **Performance:**
 - Speed is close to that of fastest memory (cache)
 - Overall capacity is that of largest memory (disk)
encyclopedia assignment

1000 questions like these:

- What is the capital city of Albania?
- Who was the fourth Roman Emperor?
- Who is the prime minister of India?
- What is the population of Argentina?
- Which team won the 1968 World Series?
- …etc.
encyclopedia assignment

Does cache help?
- Cache works ok.
- Needed volume is often at librarian’s desk.
- Lucky when questions are in same volume.
Discussion

Time

- Is the librarian’s problem solved?
How to predict the 20% most popular books for next day?

- In general, no easy solution

- In practice, use rules of thumb
 - Example: “Least Recently Used”. When you need to create space on the desk (or shelf), move out the book that was used least recently
 - Many others (LRU is computationally expensive)
Question

How does the same program (.exe file) run on different PCs with different memory configurations?

Answer: “Virtual Memory”

- All programs live a fiction: allowed to pretend they each have 2^{32} or 2^{64} bytes of memory
- Illusion is preserved by hardware
Virtual Memory

Program’s view:
- Powerpoint
- Memory:
 - Address 0
 - Address 2^{64} - 1

Underneath:
- Physical Memory
- CPU
- MMU
- TLB
- VM Address
- Physical Address
- Address Bus
- Data Bus
Lesson 2: Multitasking

- “The Multitasking Generation”
An Evening’s Tasks for a Gen-M’er

- Homework
- Listen to music
- Instant Messaging
- Call Mom (goes to bed by 11 PM!)
- Answer phone
- Read a bit more of Joyce’s *Ulysses*
- Watch the Daily Show

How do you do it all?!?
Tasks done by my PC last night

- Word processing
- Play CD
- Download news updates
- Download email
- Run clock
- Hidden tasks: handle network traffic, manage disk and RAM traffic, scheduler, etc.

Managed by “Operating System”
(Windows, Linux, MacOS, etc.)
Multitasking vs. Parallel Processing

Multitasking: A single CPU handles many tasks by switching rapidly among them. (e.g., all Wintel machines since early 1990s; all Unix machines since the 1970s)

Parallel Processing: Multiple CPUs that do the work of a single CPU. (But, 4 CPUs do not necessarily mean 4x speed.)

XPS 420
Intel® Core™2 Q6600
Quad-Core (8MB L2 cache, 2.4GHz, 1066FSB)
Scheduler’s objectives

- Fairness
- Timeliness
- Critical tasks processed promptly
- Low overhead

How can one achieve these (often conflicting) goals?