Seek and Ye shall Find

The continuum of computer “intelligence”

COS 116, Spring 2012
Adam Finkelstein
Recap: Binary Representation

<table>
<thead>
<tr>
<th>Powers of 2</th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
<th>2^4</th>
<th>2^5</th>
<th>2^6</th>
<th>2^7</th>
<th>2^8</th>
<th>2^9</th>
<th>2^10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
</tbody>
</table>

2^{10} = 1024 \approx 10^3

Fact: Every integer can be *uniquely* represented as a sum of powers of 2.

Ex: 25 = 16 + 8 + 1
= 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0

[25]_2 = 11001
Misconceptions about Computers

- Just a calculator on steroids
- Just maintains large amount of data
- Just does what the programmer tells it

Yes, but …

Weather Forecast

Airline Reservation System
Various meanings of **SEARCH**

- Look up “Shirley Tilghman” in online phonebook.
- In consumer database, find “credit-worthy” consumers.
- Find web pages relevant to “computer music.”
- Among all cell phone conversations originating in Country X, identify suspicious ones.
- Search all religion and philosophy books of the world for meaning of life.

“Data Mining”

“Web Search”
These are major scientific problems with many components

- Engineering
- Statistical Modeling
- Algorithms
- Ethics, Policy, Society
- Linguistics
How do you solve this task:

Sorted array of n numbers, find if it contains 58780

Binary search! First thing to check: “Is A[n/2] <58780”? (Whatever the answer, you halve the range.)

Question: What if the array of numbers is not sorted??
Looking up “Shirley Tilghman” in Electronic Phonebook

- **ASCII**: Agreed-upon convention for representing letters with numbers
- Example: Ideas??

<table>
<thead>
<tr>
<th>T</th>
<th>i</th>
<th>l</th>
<th>g</th>
<th>h</th>
<th>m</th>
<th>a</th>
<th>n</th>
<th>,</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>-</th>
<th>6</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>105</td>
<td>108</td>
<td>103</td>
<td>104</td>
<td>109</td>
<td>97</td>
<td>110</td>
<td>44</td>
<td>50</td>
<td>53</td>
<td>56</td>
<td>45</td>
<td>54</td>
<td>49</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

- Sorted Phonebook = sorted array of numbers
- Use binary search (prev. slide)
Rest of the lecture: Web Search

Princeton - President Shirley M. Tilghman biography
Shirley M. Tilghman was elected Princeton University's 19th president on May 5, 2001, and assumed office on June 15, 2001. An exceptional teacher and a ...
www.princeton.edu/pr/smt/bio.html - 5k - Cached - Similar pages - Note this - Filter

Princeton University Office of the President - Office of the President
President Shirley M. Tilghman. Welcome to Princeton University. From its modest beginnings in Elizabeth, N.J., in 1746, Princeton has become one of the ...
www.princeton.edu/president/ - 9k - Cached - Similar pages - Note this - Filter

Shirley M. Tilghman - Wikipedia, the free encyclopedia
Tilghman, Shirley (2005) Recruiting, Retaining and Advancing Women Scientists in Academia. Address delivered March 24 at Columbia University. ...
en.wikipedia.org/wiki/Shirley_Tilghman - 30k - Cached - Similar pages - Note this - Filter

A CONVERSATION WITH -- Shirley Tilghman: Career That Grew From an ...
Long before she became Princeton's 19th president, Dr. Shirley Tilghman was known among her peers as a distinguished molecular geneticist who had expanded ...
query.nytimes.com/gst/fullpage.html?sec=health&res=9907E3DF143DF93BA35754C0A9659C8B63 - 27k - Cached - Similar pages - Note this - Filter
Future lecture: Internet
(physical infrastructure underlying Web)

Routers, gateways, DNS, ...
(any computer can send a msg to any other)
What is World Wide Web?

Files residing on “servers” that are connected to internet.

URL (uniform resource locator); basically an “address”

A file “index.html” in “public_html” directory on some server belonging to PU.

“hyperlinks”: URL of other files; May be on another server.
Logical Structure of the Web

- **Important:** This logical structure is created by independent actions of 100s of millions of users.
1st step for search engines: create snapshot of the web

- **Webcrawler:** “browser on autopilot”
 - Maintains array of web pages it has seen
 - 2 types of pages: “visited”, “fully explored”
 - Do forever

```plaintext
{
  Pick any webpage marked “visited” from array.
  Mark it “fully explored.”
  Open all its linked pages in browser.
  Save them in array and mark them “visited.”
}
```

Better: just the pages not “visited” yet.
First Web Crawler

From: bp@cs.washington.edu (Brian Pinkerton)
Newsgroups: comp.infosystems.announce
Subject: The WebCrawler Index: A content-based Web index
Date: 11 June 1994 21:33:42 GMT
Organization: University of Washington

The WebCrawler Index is now available for searching! The index is broad: it contains information from as many different servers as possible. It's a great tool for locating several different starting points for exploring by hand. The current index is based on the contents of documents located on nearly 4000 servers, world-wide.

Check it out at:

http://www.biotech.washington.edu/WebCrawler/WebQuery.html

Other information is available from there, including a description of the WebCrawler (the robot itself), and a list of the 25 most frequently referenced sites on the Web.

Brian Pinkerton
Dept of Computer Science and Engineering
University of Washington

[http://thinkpink.com/bp/WebCrawler/History.html]
Still Feasible Today?

We knew the web was big...
7/25/2008 10:12:00 AM

We've known it for a long time: the web is big. The first Google index in 1998 already had 26 million pages, and by 2000 the Google index reached the one billion mark. Over the last eight years, we've seen a lot of big numbers about how much content is really out there. Recently, even our search engineers stopped in awe about just how big the web is these days -- when our systems that process links on the web to find new content hit a milestone: 1 trillion (as in 1,000,000,000,000,000) unique URLs on the web at once!

How do we find all those pages? We start at a set of well-connected initial pages and follow each of their links to new pages. Then we follow the links on those new pages to even more pages and so on, until we have a huge list of links. In fact, we found even more than 1 trillion
Still Feasible Today?

Western Digital - Caviar Black 1TB Internal Serial ATA Hard Drive for Desktops
Model: WD10000LSRTL | SKU: 8909595
Serial ATA interface; integrated dual processors; data transfer rates up to 3 Gbps
★★★★☆ 4.5 of 5 (97 reviews)
Check Shipping & Availability

$99.99

bestbuy.com 2/18/2010
(2TB for $120 as of 2/23/2012)
Still Feasible Today?

- More than 1 trillion web pages now
- 1 terabyte = $100
- 1 petabyte = 1,000 disks
- 1 petabyte = $100,000 in 2010
Searching for “computer music”

Ideas?

- Identify all pages that contain “computer music”.
- Sort according to number of occurrences of “computer music” in the page.
- Human staff computes answers to all possible questions.
Some pitfalls

- “Spamming” by unscrupulous websites
- Synonymy (car, auto, vehicle …)
- Polysemy (jaguar: car or cat?)
Solution

IBM’s CLEVER – 1996

Google’s PAGERANK – 1997

Take advantage of the link structure of the web

Web link confers “approval”
Authorities: Sites that are viewed “with respect” by many
- New York Times
- International Computer Music Association

Hubs: Clearinghouses of information
- “My favorite computer music links”

Typically Authorities point to hubs and hubs point to authorities

Circular Definition?

Circular Definition – see Definition, Circular
Breaking Circularity

- Iterative algorithm

Start with pages containing “Computer music” and all pages they point to.

At every step each page has:
 - “Hub Score”
 - “Authority Score”

Initially all 1
Score Calculation

- Do forever

 \{
 \begin{align*}
 \text{Next Hub Score for page} &\quad \text{Sum of current Authority Scores of pages that link to it.} \\
 \text{Next Authority Score for page} &\quad \text{Sum of current Hub Scores of pages that link to it.}
 \end{align*}
 \}

Fact The scores converge.
(Proof uses Linear Algebra, Eigenvalues)
Computer models and jurisprudence
Aug 25th 2005

[Fowler and Jeon, ’05]
- By product of CLEVER algorithm—it reveals clusters

Example: “Abortion”

- Pro-Choice
- Pro-Life

- Data Mining – Process of finding answers that are not in the data and must be inferred.

Example: “How is a person who shops at Whole Foods & REI likely to vote?”
Concerns

From users:
- Privacy
- Privacy
- Privacy

From Computer scientists:
- Formalize privacy
- How to safeguard privacy while allowing legitimate computations
Former Tigers reach finals of $1 million Netflix competition

By ILYA SABNANI
STAFF WRITER
Published: Monday, February 18th, 2008

Three friends from the Class of 2007 reached the finals of the Netflix Challenge, a competition held by the internet DVD rental service with the goal of improving its method of predicting customer movie preferences.

Team leader David Weiss ’07 and teammates Lester Mackey ’07 and David Lin ’07 won the “progress prize,” an honor that came with a cash prize of $50,000.

“Netflix Prize seeks to substantially improve the accuracy of predictions about how much someone is going to love a movie based on their movie preferences” (top prize: $1M)
Trends in web search

Algorithms to “guess” what user generating the query had in mind (using AI, Psychology, User History, News tracking).

Seamless integration with e-commerce, and click-based revenue harvesting (interesting meeting point of economics and computer science)

“Semantic web”: Allow users to attach “meaning” to web-based documents; allowing search engines to make sense of them.
Shape of things to come:

[http://shape.cs.princeton.edu/search.html]
Next week...

What computers cannot do.