“It ain’t no good if it ain’t snappy enough.”
(Efficient Computations)
Today’s focus: efficiency in computation

“If it is worth doing, it is worth doing well, and fast.”

Recall: our model of “computation”: pseudocode
Question: How do we measure the “speed” of an algorithm?

- Ideally, should be independent of:
 - machine
 - technology
“Running time” of an algorithm

- Definition: the number of “elementary operations” performed by the algorithm

- Elementary operations: +, -, *, /, assignment, evaluation of conditionals
 (discussed also in pseudocode handout)

“Speed” of computer: number of elementary operations it can perform per second (Simplified definition)
 - Do not consider this in “running time” of algorithm; technology-dependent.
Example: Find Min

- n items, stored in array A
- Variables are i, $best$
- $best \leftarrow 1$
- Do for $i = 2$ to n

  ```
  if (A[i] < A[best]) then
    { best \leftarrow i }
  ```
Example: Find Min

- n items, stored in array A
- Variables are i, $best$
- $best \leftarrow 1$
- Do for $i = 2$ to n

  ```
  \{
    \text{if} \ (A[i] < A[best]) \ \text{then}
    \{ best \leftarrow i \}
  \}
  ```

- How many operations executed **before** the loop?
 - A: 0 B: 1 C: 2 D: 3
Example: Find Min

- n items, stored in array A
- Variables are i, $best$
- $best \leftarrow 1$
- Do for $i = 2$ to n

 \[
 \begin{align*}
 &\text{if } (A[i] < A[best]) \text{ then} \\
 &\quad\{ \text{best} \leftarrow i \}
 \end{align*}
 \]

- How many operations per iteration of the loop?
 - A: 0 B: 1 C: 2 D: 3
Example: Find Min

- *n* items, stored in array *A*
- Variables are *i*, *best*
- *best* ← 1
- Do for *i* = 2 to *n*

  ```
  { 
    if (*A[i] < A[best]*) then 
    { *best* ← *i* } 
  }
  ```

- How many **times** does the loop run?
 - A: *n*
 - B: *n*+1
 - C: *n*-1
 - D: 2*n*

“iterations”
Example: Find Min

- n items, stored in array A
- Variables are i, $best$
- $best \leftarrow 1$
- Do for $i = 2$ to n

  ```
    { $best \leftarrow i$ }
  
  1 assignment & 1 comparison
  = 2 operations per loop iteration
  ```

- Uses at most $2(n - 1) + 1$ operations (roughly = $2n$)

 Number of iterations

 Initialization
Efficiency of Selection Sort

Do for $i = 1$ to $n - 1$
{
 Find cheapest bottle among those numbered i to n
 Swap that bottle and the i'th bottle.
}

- For the i'th round, takes at most $2(n - i) + 3$
- To figure out running time, need to figure out how to sum $(n - i)$ for $i = 1$ to $n - 1$
 ...and then double the result.
Gauss’ s trick: Sum of \((n - i)\) for \(i = 1\) to \(n - 1\)

\[
S = 1 + 2 + \ldots + (n - 2) + (n - 1)
\]

\[
+ \ S = (n - 1) + (n - 2) + \ldots + 2 + 1
\]

\[
2S = n + n + \ldots + n + n
\]

\[
\underbrace{n - 1 \text{ times}}_{n - 1 \text{ times}}
\]

\[
2S = n(n - 1)
\]

- So total time for selection sort is
 \[
 \leq n(n - 1) + 3n
 \]
“20 Questions”:
I have a number between 1 and a million in mind. Guess it by asking me yes/no questions, and keep the number of questions small.

Question 1: “Is the number bigger than half a million?” No

Question 2: “Is the number bigger than a quarter million?” No

Strategy: Each question halves the range of possible answers.
Pseudocode: Guessing number from 1 to n

Lower ← 1
Upper ← n
Found ← 0
Do while (Found=0)
{
 Guess ← Round((Lower + Upper)/2)
 If (Guess = True Number)
 {
 Found ← 1
 Print(Guess)
 }
 If (Guess < True Number)
 {
 Lower ← Guess
 }
 else
 {
 Upper ← Guess
 }
}
Brief detour: Logarithms (CS view)

- \(\log_2 n = K \) means \(2^{K-1} < n \leq 2^K \)
- In words: \(K \) is the number of times you need to divide \(n \) by 2 in order to get a number \(\leq 1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>16</th>
<th>1024</th>
<th>1048576</th>
<th>8388608</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 n)</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

John Napier
Running times encountered in this lecture

<table>
<thead>
<tr>
<th></th>
<th>n= 8</th>
<th>n= 1024</th>
<th>n= 1048576</th>
<th>n=8388608</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 n)</td>
<td>3</td>
<td>10</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>(n)</td>
<td>8</td>
<td>1024</td>
<td>1048576</td>
<td>8388608</td>
</tr>
<tr>
<td>(n^2)</td>
<td>64</td>
<td>1048576</td>
<td>1099511627776</td>
<td>70368744177664</td>
</tr>
</tbody>
</table>
Next....

“There are only 10 types of people in the world – those who know binary and those who don’t.”
Binary search and binary representation of numbers

- Say we know $0 \leq \text{number} < 2^K$

```
0      \[\ldots\]      2^K
```

- Is $2^K / 2 \leq \text{number} < 2^K$?
 - No
 - Yes

- Is $2^K / 4 \leq \text{number} < 2^K / 2$?
 - No
 - Yes

- Is $2^K \times 3/8 \leq \text{number} < 2^K / 2$?
 - No
 - Yes

...
Binary representations (cont’d)

- In general, each number can be uniquely identified by a sequence of yes/no answers to these questions.
- Correspond to paths down this “tree”:

 Is $2^K / 2 \leq \text{number} < 2^K$?
 - No
 - Is $2^K / 4 \leq \text{number} < 2^K / 2$?
 - No
 - Is $2^K / 8 \leq \text{number} < 2^K / 4$?
 - No
 - Yes
 - Is $2^K \times 3/8 \leq \text{number} < 2^K / 2$?
 - No
 - Yes
 - ...
Binary representation of n
(the more standard definition)

$$n = 2^k b_k + 2^{k-1} b_{k-1} + \ldots + 2 b_2 + b_1$$

where the b’s are either 0 or 1)

The binary representation of n is:

$$[n]_2 = b_k b_{k-1} \ldots b_2 b_1$$
Efficiency of Effort: A lens on the world

- QWERTY keyboard
- “UPS Truck Driver’s Problem” (a.k.a. Traveling Salesman Problem or TSP)
- CAPTCHA’s
- Quantum computing
Can n particles do 2^n “operations” in a single step? Or is Quantum Mechanics not quite correct?

Computational efficiency has a bearing on physical theories.