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Figure 1: From a raw scan with significant missing data, our algorithm extracts a complete curve skeleton, shown in the middle. RBF surface
reconstruction infers the wrong surface topology from the original input, while succeeding with the assistance of the curve skeleton.

Abstract

We present an algorithm for curve skeleton extraction from imper-
fect point clouds where large portions of the data may be missing.
Our construction is primarily based on a novel notion of generalized
rotational symmetry axis (ROSA) of an oriented point set. Specifi-
cally, given a subset S of oriented points, we introduce a variational
definition for an oriented point that is most rotationally symmetric
with respect to .S. Our formulation effectively utilizes normal in-
formation to compensate for the missing data and leads to robust
curve skeleton computation over regions of a shape that are gener-
ally cylindrical. We present an iterative algorithm via planar cuts
to compute the ROSA of a point cloud. This is complemented by
special handling of non-cylindrical joint regions to obtain a cen-
tered, topologically clean, and complete 1D skeleton. We demon-
strate that quality curve skeletons can be extracted from a variety of
shapes captured by incomplete point clouds. Finally, we show how
our algorithm assists in shape completion under these challenges by
developing a skeleton-driven point cloud completion scheme.

Keywords: curve skeleton, incomplete data, rotational symmetry

1 Introduction

The skeleton of a shape, especially an articulated shape such as
a human or animal, provides an intuitive and effective abstraction
which facilitates shape understanding and manipulation. The best
known skeletal representation is Blum’s medial axis [Blum 1967],

which, along with its variants collectively referred to as medial rep-
resentations [Siddiqi and Pizer 2009], is designed to capture reflec-
tional symmetries in a shape [Bouix et al. 2006]. The medial axis of
a 3D model is generally a non-manifold containing 2D sheets that
are hard to store and manipulate. A 1D curve skeleton, on the other
hand, is more useful in practice due to its topological simplicity,
leading to computational efficiency and ease of manipulation.

Many algorithms for curve skeleton extraction exist [Cornea et al.
2007], dealing mostly with shapes specified by closed polygonal
meshes [Hilaga et al. 2001; Katz and Tal 2003; Chuang et al. 2004;
Dey and Sun 2006; Au et al. 2008]. Computing a curve skeleton
from point cloud data is possible, e.g., via a deformable blob grown
from the “inside” of the input cloud [Sharf et al. 2007a] or relying
on the Voronoi diagram of the point set [Ogniewicz et al. 1992].
However, by design, none of the proposed methods so far handle
point clouds with large portions of the data missing.

Incomplete data are common as the result of acquisition via laser
scanning, due to self occlusion or less than ideal conditions of the
surface material. Such problems are more prevalent during real-
time capture of moving objects [Mitra et al. 2007; Wand et al. 2007;
Pekelny et al. 2008; Sharf et al. 2008]. As the number of camera
views is typically limited, the raw point clouds contain large gaping
holes and severe under-sampling.

Overview of ROSA In this paper, we present an algorithm for
curve skeleton extraction directly from incomplete point cloud data.
Our problem setting is unique in that we aim to cope with signifi-
cant missing data without the aid of a data sequence to complement
each other and possibly fill in the gaps. One of the key insights
is that instead of considering reflectional symmetry, as for medial
axes, a curve skeleton is most appropriately thought of as a general-
ized rotational symmetry axis (ROSA) of a shape. Indeed, a ROSA
ought to be a 1D structure. This seemingly obvious observation
proves to be an essential step towards robust handling of incom-
plete point data. The second key is to effectively exploit orientation
information to compute ROSA so as to compensate for the missing
data.

To handle significant missing data with only a single point cloud
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Figure 2: ROSA definition for a set of oriented points in 3D. Left:
Optimal direction (red arrow) minimizes sum of angular variations
with the surrounding normals. Right: Optimal point (red dot) min-
imizes sum of projected distances to the normal extensions.
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Figure 3: Stability of ROSA point position and orientation with
more than half of the points missing.

available, an appropriate shape prior is necessary. A general
premise of our approach is that the shapes of interest should be cov-
ered by generally cylindrical regions except at their joints. This is a
reasonable assumption as only such shapes would admit meaning-
ful curve skeletons; a serving plate, baseball cap, or bowling ball,
for example, do not belong to this category and they possess no
natural curve skeletons. ROSA is designed to skeletonize generally
cylindrical regions, even with significant missing data.

To compute ROSA, we take advantage of available point normals
and introduce a variational formulation which works on a local sub-
set S of oriented samples in the input point cloud. We define an
oriented point p = (x5, vp), called a ROSA point, with position z,,
and normal v, that is most rotationally symmetric about S. Our
definition applies to 3D quantities and it requires that

1. the orientation v, minimizes the variance of the angles be-
tween v, and the normals in S. In other words, v, is to make
the same angle with these normals as much as possible, con-
sistent with the notion of rotational symmetry;

2. the position x;, minimizes the sum of squared distances to the
line extensions of the point normals in S.

Figure 2 illustrates our definition and Figure 3 shows it at work
with significant missing data. One can immediately recognize the
difference between our formulations and the use of average normal
or centroid — both are sensitive to missing data.

Figure 4 reinforces the point that orientation information can effec-
tively compensate for missing data in curve skeleton extraction. Re-
lying on point orientation for shape inference has been a common
practice in several other contexts, such as neighborhood identifi-
cation via Mahalanobis distance [Amenta and Kil 2004; Lehtinen
et al. 2008] and surface reconstruction with the assistance of point
normals [Carr et al. 2001; Kazhdan et al. 2006].

Building on the local ROSA formulation, we present an iterative
procedure via planar cuts to locate the best subset S for deriving
the rotational symmetry axis of the whole point cloud. It is inter-
esting to note that if such procedures were to be applied to a 2D
shape, we would arrive at a point on the symmetry set of the shape
boundary [Giblin and Brassett 1985], of which the medial axis is a
subset. This connection is discussed further in Section 3.
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Figure 4: Orientation information compensates for missing data.
Left: With missing samples from two touch circles and no normals,
the computed centroid (green dot) leads to a wrong interpretation
of the data. Right: Sample normals reveal two clusters, leading to
two ROSA points (red dots). The correct shape can be inferred.

Contributions The main contributions of our work include a
novel definition of generalized rotational symmetry axis for a point
set that is: (i) designed to model generally cylindrical regions of a
shape, and (ii) robust to missing data. We develop a curve skele-
ton extraction algorithm from incomplete point clouds based on
recursive planar cuts and local ROSA construction, as well as a
scheme to robustly detect and skeletonize the non-cylindrical joint
regions of a shape. The computed curve skeleton is complete, de-
spite a potentially incomplete data source, and it is guaranteed to be
a 1D structure with associated correspondence to points in the input
cloud. We demonstrate experimentally that quality curve skeletons
can be constructed from a variety of shapes under imperfect data
conditions. Finally, we show an application of our algorithm for
shape completion under significant missing data; see Figure 1.

2 Related work

Skeletons are effective shape abstractions that have been used in
various applications including mesh segmentation [Li et al. 2001;
Au et al. 2008], animation [Lewis et al. 2000], and shape match-
ing [Hilaga et al. 2001]. We focus on 1D curve skeletons embedded
in 3D. For a coverage on medial axis and other higher dimensional
medial representations, we point out the recent book by Siddiqi and
Pizer [2009]. There are many existing algorithms for curve skele-
ton extraction and we only mention a subset. For the rest, we refer
the reader to the recent survey by Cornea and Min [2007].

The field-based approach to curve skeleton extraction relies on an
Euclidean distance field [Malandain and Fernandez-Vidal 1998] or
an implicit potential field [Chuang et al. 2004] corresponding to the
input shape, resulting in a voxelized representation of the internal
volume. The skeleton is then computed via volumetric thinning,
ridge extraction, or force following along the ridges of a potential
field. These methods generally require clear knowledge about the
interior of the input shape, making them inapplicable to incomplete
data. The recent work of Au et al. [2008] shares some flavors with
field-based methods; it skeletonizes a shape by shrinking it using
constrained Laplacian smoothing. Excellent results are obtained,
but they can only come from watertight meshes, since Laplacian
smoothing requires mesh connectivity and a full model is needed to
balance the shrinking process so as to obtain a centered skeleton.

Other works which require complete meshes as input include Li
et al. [2001] which uses mesh decimation, the segmentation-based
approach, e.g., Katz and Tal [2003], and topology-driven methods,
e.g., via Reeb graphs [Hilaga et al. 2001; Patane et al. 2008], which
extract and link critical points of a function over the mesh surface.
The latter rely on geodesic distances, which are difficult to obtain
on a point cloud with significant missing data. Geodesic distances
also play a key role in the work of Dey and Sun [2006] where they
define a medial geodesic function over the medial axis of a shape to
skeletonize the medial axis into a 1D structure.
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Figure 5: Overview of our algorithm. (a) Input point cloud with a joint (blue). (b) Optimal cutting plane and relevant neighborhood points
(blue) anchored at a point cloud sample (red particle). (c) Skeletal cloud after ROSA and joint recovery. (d) After thinning with branch
(green) and joint (blue) identification. (e) After re-centering, still a skeletal cloud. (f) The final 1D curve skeleton.

Recently, skeleton extraction from a sequence of deforming
meshes [James and Twigg 2005; de Aguiar et al. 2008] has been
of interest. These methods utilize vertex correspondence across
frames and assumptions on motion, e.g., piecewise rigidity, to ex-
tract the skeleton or bones from complete data. In our problem set-
ting, the input is a single point cloud with significant missing data.
Shape completion prior to skeletonization, e.g., via RBF [Carr et al.
2001], can be a means to handle incomplete point clouds. However,
these surface reconstruction schemes are not designed to cope with
significant missing data. In such cases, user intervention is often
necessary to clarify object topology [Sharf et al. 2007b].

Curve skeleton extraction directly from point clouds is possible via
Voronoi skeletons [Ogniewicz et al. 1992]. However, the robust-
ness of this class of methods relies on specific sampling conditions
which are generally un-attainable in practice and certainly far from
being fulfilled in our setting. Sharf et al. [2007a] grows a smooth
blob from the inside of a point cloud and the growing fronts trace
out a curve skeleton. This approach can handle moderate missing
data, where properly set tension parameters can prevent the blob
from “leaking outside” over incomplete data regions. However, this
is difficult to achieve for significant missing data.

There has been a great deal of recent research on symmetry de-
tection and symmetry-aware geometry processing, e.g., [Kazhdan
et al. 2004; Mitra et al. 2006; Podolak et al. 2006; Ovsjanikov et al.
2008], to name a few. Most methods deal with reflectional sym-
metry and when general symmetries, including rotational ones, are
considered, the focus has so far been on intrinsic analysis over a
shape using geodesic distances. Hence these methods do not apply
to our problem. More relevant is the work of Thrun and Wegbreit
[2005] which utilizes symmetries for shape completion from 3D
range images, but the types of symmetries considered are only ele-
mentary ones. To the best of our knowledge, our work is the first to
introduce a generalized, local rotational symmetry axis definition to
oriented point clouds and apply it to curve skeleton extraction.

We focus on shapes composed of generally cylindrical regions ex-
cept at their joints. There exist works on fitting closed polygonal
meshes using cylinders [Raab et al. 2004], ellipsoids [Simari and
Singh 2005; Lu et al. 2007], or general swept volumes [Kim et al.
2003]. Fitting generalized cylinders parametrically over a point
cloud seems difficult without first extracting a skeleton [Chuang
et al. 2004]. With missing data, this is exactly the problem we ad-
dress, to which we take a local, non-parametric approach.

3 Overview

Given a single point cloud with normals, we extract a curve skele-
ton, a compact 1D abstraction of the sampled shape. Point normals
can be acquired via photometric stereo [Nehab et al. 2005] or com-
puted from unorganized points via a normal estimation and orienta-
tion scheme, e.g., [Hoppe et al. 1992]. Denoising or outlier removal
from a raw point set is not a focus of our work. When necessary,
we apply the parameterization-free projection operator LOP by Lip-
man et al [2007] to obtain a clean and evenly distributed point set.
Note that LOP makes no attempt at completing missing data.

Our method does not rely on any ambient field, volumetric dis-
cretization, sampling assumptions, or an intermediate surface rep-
resentation. We assume that the input point cloud samples a shape
which is composed of generally cylindrical regions, which we call
branch regions, except at their joints, as shown in Figure 5(a).
The branch regions are well described by rotational symmetry and
ROSA is designed to extract a generalized, local rotational sym-
metry axis from such a region to form a skeleton. Joint regions are
typically non-cylindrical and require special handling. Note that for
illustration purposes only, in this section and the next, we adopt a
point cloud example without missing data.

Cutting planes We observe that each point on the rotational sym-
metry axis of a generally cylindrical shape should correspond to
a narrow “band” on the shape which is approximately planar; see
Figure 5(b). This motivates the use of planar cuts over the input
point cloud to localize the search of a ROSA point on the shape’s
skeleton. Obviously, not all cutting planes imply desirable rota-
tional symmetries. We search for a best cutting plane and anchor
the search at each sample point in the input cloud. There are three
advantages to anchoring the search. First, the anchor point can seed
the search for the relevant set of samples near a cutting plane for
ROSA construction; see Section 4.1 for details. Secondly, anchor-
ing of the cutting plane implies a natural correspondence between
the point cloud and the computed skeleton. Finally, this approach
leads to a simplified search for the best cutting plane.

ROSA construction Instead of optimizing for both orientation
and position of a ROSA point at the same time, leading to a higher
dimensional search, we decouple the two components and optimize
for orientation and then position, each of which is a linear problem
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Figure 6: 2D illustration of iterative ROSA construction and con-
nection to medial axis. (a-c) Cutting plane anchored at blue sample
goes from po to p2 and converges. During iteration, the normal of
the next cutting plane (red) makes the same angle with those nor-
mals (black) at the boundary, corresponding to the current cutting
plane. (d) When converging, ROSA point (green) is the intersection
between two boundary normals and lies on the medial axis.

and can be solved in closed form. Specifically, through each sample
in the point cloud, we find a best cutting plane whose normal min-
imizes the variance of angles with the normals at a set of relevant
points close to the cutting plane; see Figure 5(b) for an illustration
of this relevant set. The optimal orientation is found iteratively, as
illustrated in 2D in Figure 6(a-c). Once the cutting plane is found,
we compute the optimal position of a ROSA point based on that
relevant set of oriented points; see Section 4.1.

Connection to medial axis Figure 6(d) reveals that there is a
close connection between ROSA construction in 2D and the medial
axis. Indeed, if the iteration converges, simple geometric arguments
show that the optimal ROSA point is the center of a bi-tangent circle
of the shape boundary. This point lies precisely on the medial axis if
the bi-tangent circle is inside the shape. Since we do not constrain
the circle to be inside, the ROSA points generally belong to the
symmetry set of the boundary curve, which is the loci of centers of
all bi-tangent circles [Giblin and Brassett 1985]. Note however that
since we incorporate point orientations, the set of ROSA points is
more restricted than the full symmetry set.

Joint handling and curve skeleton extraction A joint region
is generally non-cylindrical and lacks a simple rotational symme-
try axis. We exploit spatial coherence between the point cloud
and skeleton to ensure that points on the skeletal structure pro-
vide a smooth connection between the ROSAs of the branches, as
shown in Figure 5(c). Since this step does not constrain the struc-
ture near joints to be 1D or well centered, we apply thinning and
centering in post-processing. The thinning process uses 1D moving
least squares (MLS) construction [Lee 2000] which also allows us
to differentiate between joints and branches; see Figure 5(d). Points
on the resulting skeletal structure are centered according to ROSA
within a branch and collapsed to a single center within a joint and
then connected to nearby branches. The resulting structure, shown
in Figure 5(e), is sufficiently close to being 1D and can be easily
converted into a set of curve segments, as shown in Figure 5(f).

4 Curve skeleton extraction via ROSA

We first present ROSA construction in Section 4.1. Section 4.2
describes our joint handling procedure. This is followed by thinning
and re-centering of the resulting skeletal cloud and the extraction
of the complete 1D skeleton. In the following, we refer to a point
from the input cloud as a point cloud sample, a point computed by
the ROSA formulation as a ROSA point, and a point which lies on
the currently computed skeletal structure as a skeletal sample.

4.1 ROSA and skeletal cloud construction

Cutting planes and relevant neighborhoods Let p; be a point
cloud sample. Let us consider a cutting plane 7; through p;, with
orientation v;, and identify a narrow band of point cloud samples
within a distance less than § from m;. The thickness value ¢ is
applied globally and it is a free parameter set to be 2.5% of the
bounding box diagonal of the input point cloud in all examples.
Determination of the plane orientation v; will be described later.

For a complex shape, the cutting plane may encompass multiple
shape parts. Thus we first need to further identify from within the
narrow band of points near m;, a relevant neighborhood N; of point
cloud samples, for ROSA construction. In general, the configu-
ration of points in the entire band can be complex. However, we
avoid having to solve a full-fledged clustering problem since NV; is
anchored at p;, i.e., p; € N;. Note also that while having point
positions may only lead to ambiguities when we group around p;
under missing data, point normals can effectively compensate for
the missing data in identifying the relevant neighborhood N;.

Therefore, we utilize Mahalanobis distance, which combines Eu-
clidean and orientation-space information, to derive the relevant
neighborhood N;. We adopt the formulation of Mahalanobis dis-
tance from Lehtinen et al. [2008] to compute an orientation-aware
distance dman between point cloud samples with normals. We use
this distance measure and an appropriately chosen threshold eman to
construct a graph on all the point cloud samples, where there is an
edge between p; and py, if and only if dman(pj, Pr) < €Man-

The relevant neighborhood N; at p; is then extracted by computing
the connected component in the Mahalanobis distance based graph
defined above: we execute a breadth first search rooted at p; and
recursively add point cloud samples from within the narrow band
around ;. Note that while the set N; changes with the threshold
€Man, the final computed ROSA point remains quite stable due to the
robustness of ROSA definition to missing data. Thus, we choose a
relatively aggressive threshold in our experiments.

Optimal cutting plane At sample p;, we wish to find an optimal
cutting plane 7] through p; which best models its local rotational
symmetry. Specifically, the normal of 7} should be most rotation-
ally symmetric about the point normals in the relevant neighbor-
hood N;. The corresponding optimization problem is difficult and
non-linear, thus we solve it by an iterative approach. We start with
an initial orientation v{ and iteratively update the orientation by
solving the following variational problem involving the variance of
angles between the plane normal and point normals from the rele-
vant neighborhood associated with the current cutting plane:

t+1
Vi

= argmin var{{v,n(p;)) : p; € N"},t >0, (1)

veR3, |lv]=1

where Ni(” is the relevant neighborhood for the cutting plane at
the ¢-th iteration and n(p;) is the unit normal at point p;. Problem
(1) has a closed form solution as it can be re-written as one which

minimizes the quadratic form v’ Mv, subject to ||v|| = 1, where
XZ-X°  2XY-2X) 2XZ-2XZ
M= 2%y -2Xy 2-) 2VZ-2VZ
0XZ-2XZ 2DZ-2Z 2Z°-Z

Here X denotes a random variable for the x-component of the point
normals in Ni(t), similarly for ) and Z, and X denotes the sample

mean, which in our case, is simply an average over the set Ni(”.
The quadratic problem can be solved analytically via singular value
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Figure 7: Optimal cutting plane orientations at branches (well-
behaved) and joints (noisy due to lack of rotational symmetry).

decomposition. In Figure 7, we zoom in and show optimal ori-
entations computed near a branch region; they are well-behaved.
However, near a joint, the lack of local rotational symmetry makes
the orientations noisy. This issue is addressed in Section 4.2.

The initial direction v{ is selected randomly among those perpen-
dicular to the normal at p;, as motivated by the cylindrical shape
prior. Experimentally, we have observed fairly fast convergence,
with no more than ten iterations required before the plane orienta-
tion stabilizes. However, we currently do not have a convergence
proof. Problematic local minima are rare and such occurrences can
be corrected by enforcing spatial coherence during joint handling.

Skeletal point computation Given an optimal cutting plane 7;
at p;, we next compute the corresponding ROSA point r;, the cen-
ter of local rotational symmetry. The computed ROSA points col-
lectively form the initial skeletal cloud. We again utilize orientation
information at the points and solve the following problem to mini-
mize the sum of squared distances from p; to the normal lines,

ri=argmin Y |lr=p) x0@)’ @
reRs3 . *
pj EN;

where N;* is the relevant neighborhood for the optimal cutting
plane. Problem (2) is again a standard quadratic minimization and
has a closed form solution by straightforward differentiation.

4.2 Joint handling and curve skeleton extraction

Enforcing spatial coherence While in branch regions, the com-
puted skeletal cloud resembles a 1D structure, the same does not
hold for joints, as shown in Figure 8(a). Indeed, a joint region is
generally non-cylindrical and does not possess a meaningful opti-
mal cutting plane. As a result, ROSA points within a joint can be
rather scattered. To remedy this problem, we exploit spatial coher-
ence: close-by samples over the underlying shape of the point cloud
should correspond to close-by skeletal samples.

To enforce spatial coherence, we apply Laplacian smoothing to the
ROSA points where the point connectivity is implied from Maha-
lanobis proximities between the corresponding point cloud sam-
ples. Intuitively, this operation “tightens” the skeletal cloud within
joint regions and reveals more clearly the branch connections; see
Figure 8(b). In addition, skeletal cloud noise caused by imperfect
cutting planes, e.g., due to local minima, can be removed.

Thinning and branch/joint identification While being spatially
coherent, the resulting skeletal cloud requires further thinning to
converge to a 1D structure. This is especially necessary within
branch regions near a joint, as the smoothing step above may dis-
tort the linearity of the skeletal cloud therein. We apply 1D MLS
construction on the skeletal cloud for thinning. MLS techniques are
well known for curve or surface reconstruction and in the 1D case,
we repeatedly project skeletal samples onto their corresponding lo-
cally best-fitting lines, via principal component analysis (PCA).

@

Figure 8: Joint handling, a zoomed-in view. (a) After ROSA con-
struction. (b) After joint recovery via smoothing. (c) After thinning.
(d) After re-centering and joint collapsing. (e) After re-distribution
of skeletal samples. (f) Final 1D curve segments.

Local PCA and well-thinned branch regions give us a simple and
robust way to distinguish between branch and joint skeletal sam-
ples. Specifically, we examine a standard linearity measure

) = AP O N )

at skeletal sample r;, where /\EJ ) is the j-th largest eigenvalue from
local PCA at r;. We only apply 1D MLS to 7; when ¢(r;) < emvs,
typically indicating that r; is in a branch. Applying 1D MLS to
skeletal samples within a joint is not so meaningful, as the data
there do not possess a line-like structure. The tolerance emys is set
conservatively to 0.4 throughout our experiments. Figures 8(b-c)
show the effect of thinning.

Centering and 1D curve extraction Steps taken so far for joint
handling may distort the centered-ness of the skeletal cloud. Thus
we re-center the skeletal cloud, according to the type of skeletal
samples, either within a joint or a branch. The scalar field given
by 1), defined above, on the skeletal samples provides exactly the
means to achieve the latter. Re-centering within a branch follows
Equation (2). Specifically, a branch skeletal sample r; is moved
to the ROSA point computed for a small neighborhood of point
cloud samples which correspond to a small neighborhood of r; in
the skeletal cloud. Within a joint, skeletal samples collapse to a
unique joint center again according to (2), using all the point cloud
samples corresponding to the joint; see Figure 8(d).

In final post-processing, we re-distribute the skeletal samples by
smoothing constrained by spatial coherence as before. The result-
ing skeletal cloud still maintains a line-like structure within the
joints with only the joint skeletal samples “pulled” out of the col-
lapsed center and distributed along line-like connections to the ad-
jacent branches; see Figure 8(e). From the final skeletal cloud, that
is sufficiently close to being 1D, we apply subsampling and con-
nect the samples with short curve segments [Lee 2000] to obtain a
classical 1D curve skeleton representation; see Figure 8(f).

5 Results and applications

We demonstrate results of curve skeleton extraction from incom-
plete point clouds and also present a skeleton-driven point cloud
completion scheme to assist conventional surface reconstruction al-
gorithms, such as RBF and Poisson reconstruction, in proper recov-
ery of surface topology when the missing data is significant. For
visualization, we render the back-facing points in black and front-
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(c-2) 2 scans.

(f-2) 2 scans.

(f-1) 1 scan.

(f-4) 4 scans.

(f-6) 6 scans.

Figure 9: Curve skeletons extracted as virtual scans are removed. Here two scans are sufficient to extract a complete skeleton, where about
40% of the points for the fertility model and about 55% of the points for the camel model are missing.

facing points using transparent colored splats. The final skeleton is
shown by segments of thin red cylinders.

5.1 Curve skeleton from incomplete point clouds

To demonstrate the robustness of our method, we first use a virtual
scanner to collect point data from a set of views around a complete
surface model and then progressively remove points captured from
the different views to simulate incomplete data. Specifically, we
place k viewpoints on a bounding sphere of the object centered at
the object centroid O. From each viewpoint V;, we generate a set
of samples via orthographic ray casting from a uniform grid on the
plane through V; and perpendicular to the vector V;O.

In Figure 9, we show the curve skeletons extracted as points cap-
tured by the k views are removed. While one scan does not result
in complete skeletons, two are sufficient for the camel and fertility
models. Difficulties with the camel involve the hump and close-
by points near the knees. The skeletons extracted around these re-
gions show the robustness of our schemes for finding optimal cut-
ting planes and relevant neighborhoods.

The fertility model shows our algorithm at work on a sampled high-
genus shape whose generally cylindrical parts may not have a cir-
cular profile; it also demonstrates robustness in joint handling. As
we can see, beyond two scans, the extracted curve skeletons remain
quite consistent. However, certain topological changes can occur
within regions where there are significant differences in the point
samples, e.g., compare (c-3) with (c-2) and (f-6) with (f-4).

Figure 10 presents a small gallery of curve skeleton results on a va-
riety of 3D objects. The mannequin sequences were captured from
few views, almost a single view for the standing pose, and this leads
to a great deal of missing data. However, as the mannequin is an
articulated model whose body parts are mostly perfectly cylindri-

cal, our shape prior works strongly to allow the recovery of quality
curve skeletons. These results suggest the potential applicability
of our method to the analysis of deformable point cloud sequences
when the views are limited and frames of capture are sparse.

For each raw input cloud, we remove outliers, denoise, and subsam-
ple the raw data to 10, 000 points using the LOP operator [Lipman
et al. 2007]. The required point normals in all tests are estimated via
local PCA followed by the normal orientation algorithm of Hoppe
et al. [1992]. Note that normals obtained this way are not guaran-
teed to be accurate or even possess the correct orientations, espe-
cially near regions of missing data; these potential errors are quite
well tolerated by our algorithm, as the experiments show.

The entire curve skeleton extraction algorithm has been developed
within the MATLAB environment, hence the speed of execution is
not optimized. The most time-consuming step is the construction of
the Mahalanobis neighborhoods during ROSA construction. Typi-
cally, on a point cloud with 10K points, ROSA computation takes
about 3 minutes, while joint recovery and other post-processing
steps are accomplished at interactive rates.

5.2 Skeleton-driven point cloud completion

Missing data are common during 3D shape acquisition. When such
cases are only caused by shallow concavity or occasional surface
material artifacts, the missing regions are quite small and interpola-
tion schemes, such as RBF [Carr et al. 2001] or Poisson [Kazhdan
et al. 2006] construction, have proven to be effective in completing
the shape. However, due to deep cavities in a shape, severe occlu-
sion, or limited views generated by the scanner, large portions of
the data may be missing and shape completion over these regions
can be next to impossible without a reliable shape prior or user
assistance [Sharf et al. 2007b]. Data completion over large gaps
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Figure 10: A gallery of curve skeleton extraction results. Except for the synthetic “fork” model (green) and the horse, whose missing data
are simulated via the virtual scanner, all input come from raw scanned data.

is possible using the smoothness prior and via energy minimiza-
tion in the Laplacian processing framework [Sorkine and Cohen-Or
2004]. However, a prerequisite to these methods is mesh connec-
tivity, which is difficult to obtain in our case in the first place.

Indeed, the recovery of correct surface topology from imperfect
point clouds is where the main challenge lies. Most problems occur
between near-by surfaces, where missing data typically occur and
reconstruction schemes such as RBF may infer the wrong topology;
see Figure 1. This is where a complete and topologically correct
curve skeleton can be of great assistance. Our method effectively
exploits an additional shape prior and allows shape completion in
highly challenging situations, as demonstrated in Figure 1 and 11.

Overview Based on the curve skeletons extracted in this work,
we develop a mesh-less approach to shape completion where we fill

the missing data regions using points only. The curve skeleton and
associated correspondence to the point cloud samples provide the
necessary reference frame to allow a ‘“space-time” reconstruction
over large gaps using both the cylindrical shape and smoothness
priors. Here the time axis is the direction along the skeleton and
the local parameterization is a radial one within the cutting planes,
assuming that locally the 2D profile is star-shaped.

The more complete point cloud can then be subjected to RBF or
Poisson reconstruction to obtain the final surface. In Figure 11,
we show Victoria reconstructed via Poisson [Kazhdan et al. 2006]
based on the skeleton shown in Figure 10. Similar to Figure 1, the
assistance given by the curve skeleton effectively steers the recon-
struction towards a better interpretation of the object topology.



Algorithm First, we traverse branches of the obtained curve
skeleton, gathering point cloud samples lying near the correspond-
ing cutting planes. For every cutting plane, we construct a cylin-
drical parameterization of the collected samples. Specifically, at
every radial angle 6, the distance from a point cloud sample and the
current ROSA center on the skeleton can be estimated.

Given t;, which discretely parameterizes the skeletal curve, and a
set of discrete radial directions 0;, we then construct a distance ma-
trix D(ti, Qi). Under the smoothness prior, the distances parameter-
ized in D should be well represented by a smooth function. Thus,
over the matrix D, we solve an implicit function optimization, min-
imizing the membrane energy within the common Laplacian pro-
cessing framework. While in these works the mesh connectivity is
available, in our mesh-less solution, adjacency information is nat-
urally provided by the cylindrical parameterization: elements with
close-by parameters t; and 6; are connected.

We solve the optimization problem iteratively, which is quite effi-
cient. The solution provides estimated distance values over missing
data regions, which are filled with new point samples reflecting the
distances. Finally, we employ RBF or Poisson reconstruction on the
resulting point cloud to obtain a smooth surface. We should stress
here that the local cylindrical parameterizations utilized in our ap-
proach are meaningful only within branch regions. Hence we do
not insert new samples over joint regions. However, it is interesting
to note that by its nature, a joint is typically well constrained by the
meeting branches. Thus smooth implicit schemes such as RBF or
Poisson typically perform quite well in surface completion over the
joint regions, as shown in Figure 1 and 11.

5.3 Limitations

The obvious conceptual limitation to our approach is the shape prior
used. Furthermore, ROSA is not guaranteed to be inside the per-
ceived shape, e.g., when the cut profile is highly concave. On the
theory front, we lack a convergence proof for the iterative planar
cut procedure, though we have not experienced any non-converging
behavior of ROSA construction experimentally. The main practi-
cal issue is parameter tuning. Throughout our experiment, we aim
to select a robust set of parameters, 6, eman, and emrs, and in most
cases, we have succeeded in doing so. However, as we observe from
Figure 9 for the 2-scan camel and 6-scan fertility models, using the
same threshold values can result in topological inconsistency of the
extracted curve skeletons. More careful parameter tuning can fix
the problem, however a more principled approach is to find an au-
tomatic parameter-setting scheme.

Lastly, there are always extreme cases, e.g., highly inaccurate nor-
mals or several under sampling such as the 1-scan cases in Figure
9, which can cause our method to fail. However, it is worth it-
erating that our algorithm is statistical in nature; it benefits from
the data ensemble so that particular issues encountered in parts of
the data may not heavily influence the final result negatively due
to more reliable data or more suitable processing from other parts.
Thus, occasional extreme data artifacts are typically well compen-
sated within such a statistical framework.

6 Conclusion and future work

Curve skeletons are intuitive and powerful abstractions for a large
variety of shapes, in particular articulated shapes and more gener-
ally those formed by generally cylindrical components. There has
been a great deal of work on curve skeleton extraction from surface
representations while the method presented in this paper applies,
for the first time, to point clouds where large portions of the data
may be missing. Our approach builds upon the notion of gener-

Figure 11: Skeleton-assisted Poisson reconstruction (right) more
faithfully recovers the topology of the Victoria model, while the
same reconstruction (left) on the original input does not, due to
missing data; see Figure 10 for locations of missing data.

alized rotational symmetry axis for curve skeleton extraction and
with proper joint handing, it leads to complete, characteristic curve
skeletons even with significant missing data. We demonstrate the
effectiveness of our algorithm using numerous examples and also
show how the extracted curve skeletons can assist in RBF or Pois-
son shape completion in challenging situations.

For future work, we would like to realize the potential of curve
skeletons for registration and reconstruction of time-varying point
clouds. We believe curve skeletons will serve as effective reduced
models for such tasks. In particular, the ability to extract complete
skeletons from incomplete point clouds should allow less scans per
model and less captures across time for a more efficient solution to
this important and difficult problem. Finally, shape inference from
incomplete data is an ill-posed problem and there are always chal-
lenging scenarios where user assistance is needed. Curve skeletons
are not only intuitive shape abstractions, but also easy to manipulate
compared to the point cloud itself. We wish to exploit this charac-
teristic of curve skeletons and the skeleton-shape correspondences
obtained from our method for interactive shape repair.
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