
COS 521: Advanced Algorithms∗

Streaming Algorithms

1 Introduction

The emergence of the web and the explosion of digital data of various forms has created
the need for very efficient algorithms to deal with large data sets. A search engine is a
good example of an application that needs to efficiently process very large amounts of data.
Think about processing query logs to compute statistical information about the queries (e.g.
the number of distinct queries), or processing the collection of documents crawled by the
search engine to identify and eliminate near duplicate documents. Both these applications
can be readily solved if the data set is relatively small, for example, if it fits in main memory.
However the sheer size of the data set renders most common approaches infeasible. In the
case of computing the number of distinct queries, the obvious technique that comes to mind
is to make one pass over the query log and record the set of distinct queries seen so far (e.g.
by storing them in a hash table). This can then be used to report the number of distinct
elements. A search engine like Google probably receives close to a billion queries every day.
The hash table approach is not a very practical solutions in this setting. How would you
ever hope to scale this solution to compute the number of distinct queries in a year ?

An emerging area in Computer Science is that of streaming algorithms, referring to very
efficient algorithms that process very large amounts of data by making one or more passes
over the data and recording very compact summaries, or sketches of the data. In construct-
ing such compact summaries, we discard most of the data set, but retain some valuable
information about it that still enables us to perform the computation we wanted. Ideally, we
would like to be able to guarantee that such sketches allow us to compute the same things
that could be computed with the entire data set. In most cases, this is too good to be true
and we must settle for an approximation of what we wanted to compute. However, there
is usually a tradeoff between the size of the sketch and the quality of the approximation it
supports. In many cases of interest, by choosing our sketch sizes sufficiently large, we can
ensure that the quantities of interest can be computed to any specified degree of accuracy.
In other words, for any ε > 0, we can compute the quantities of interest to within a factor
of 1 + ε of their correct values. Several ingenious, constructions of such sketches have been
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devised that allow approximate computations to be performed using a very small summary
of the data set. We will describe such sketch constructions for the problem of estimating
the number of distinct queries in a query log and later, for estimating similarity of pairs of
documents.

1.1 Estimating distinct elements

We would like to develop a procedure to estimate the number of distinct queries in the query
log with very good accuracy. We will accomplish this by designing a sketch (a compact
summary) that can be computed in a single pass over the data set. Further, we will be
able to estimate the number of distinct queries from this sketch. By increasing the sketch
size suitably, we will be able to get an approximation to the number of distinct elements to
within any desired accuracy. Our sketch construction will be randomized, i.e. our algorithm
will make some random choices initially and the sketch constructed will be a function of
the random choices made. We will argue that the estimates produced from the sketch
construction will very accurate with high probability.

The overall idea behind the sketch construction for estimating distinct elements is as
follows: We first construct a random variable which is a function of the queries in the query
log. This will be a quantity (a real number) that is quite simple and can be computed
in a single pass over the entire data set by storing very little information. In fact we will
design the random variable so that it is a function of the set of distict queries in the log,
i.e. multiple copies of the same query will not affect its value. This is a random variable
because its value will depend on some random choices made initially, as well as the set of
distinct queries in the log. Further, we will show that the expected value of the random
variable is a (monotone) function of the number of distinct queries. Knowing the expected
value of this random variable exactly will allow us to compute the number of distinct queries
exactly. Of course, we do not know how to compute the expectation of this random variable
exactly. However, we will show that, by taking multiple independent copies of this random
variable, we will be able to obtain a very good approximation of the expectation. This
good approximation of the expected value will then allow us to get a good approximation of
the number of distinct queries in the query log. Admittedly, this is somewhat indirect and
it is completely unclear at this point how we are going to achieve this goal. Why should
random variables have anything to do with the simple straightforward problem of computing
the number of distinct queries ? Before you read the details, take a moment to review the
overall approach again. Now take a deep breath and read on.

Let U be the universe of all queries. We will construct a random hash function h : U →
[0, 1]. This is a function that maps every query in the universe to a real number in the
range [0, 1]. For now, let us make the (unrealistic) assumption that h is indeed a random
hash function. This means two things. Firstly, h(x) is a random variable that is uniformly
distributed in [0, 1]. (Note that we say h(x) is a random variable because its value depends
on the initial random choice of hash function h.) Secondly, for distinct x1, . . . xn, the values
h(x1), . . . , h(xn) are mutually independent.

The algorithm initially picks such a random hash function h. We then applies h() to
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every query in the query log by making a single pass over the data. In doing so, we record
the minimum value of h(x) we have seen so far. Let Y be the minimum value of h(x) over
all queries in the query log. The random variable Y is the basis for the sketch construction
for distinct elements.

First, lets establish some properties of this random variable Y . Observe that

1. Y can be computed in a single pass over the data set. Note that very little information
about the data set needs to be stored in this process. In fact, we only need to store
the minimum value of h(x) over all queries x encoutered so far.

2. Y is a function of the collection of distinct queries in the query log. Multiple copies of
a query do not affect the value of Y . (Verify this !)

What can we say about the expected value of Y ? It turns out that the expected value
of Y is a function of the number of distinct queries in the query log. Suppose there are
k distinct queries x1, . . . , xk. Then, h(x1), . . . , h(xk) are k independent random numbers
uniformly distributed in the range [0, 1]. Thus the distribution of random variable Y is the
same as the distribution of the minimum of k independent random numbers chosen uniformly
in [0, 1]. First lets get an intuitive understanding of what the expected value of Y ought to
be. Roughly speaking, you expect k random numbers uniformly distributed in [0, 1] to be
roughly equally spread in the interval [0, 1]. Thus it reasonable to expect that the minimum
of these k numbers is roughly 1/k. In fact this is not very far from the truth. It turns out
that E[Y ] = 1

k+1
and further Var[Y ] ≤ 1

(k+1)2
.

So we now have a random variable whose expectation is 1/(k + 1). Recall that k the
number of distinct elements is the quantity we set out to estimate. If we only knew the
expectation of this random variable we constructed, we could derive k exactly from it. Well
we can come close to achieving this goal. If we construct a collection of t independent copies
Y1, . . . , Yt of the random variable Y , we could try to estimate the expectation by looking at
the values of the t variables Y1, . . . , Yt. First let’s understand what it means to construct
t independent random variables Y1, . . . , Yt. Well we first pick t independent random hash
functions h1, . . . , ht such that each of them map queries to [0, 1]. For the ith hash function
hi, let Yi be the minimum value of hi(x) over all queries x in the log. The sketch consists of
the t values (Y1, . . . , Yt). Note that this sketch can be computed in a single pass over the data
set. The distribution of the random variables Yi is exactly the same as the distribution of the
random variable Y we analyzed before; thus its distribution is a function of the number k
of distinct elements. However Y1, . . . , Yt are independent copies of this random variable, i.e.
for a given value of k, the number of distinct elements, the variables Y1, . . . , Yt are mutually
independent.

Recall the the whole point of defining Y1, . . . , Yt was to estimate the expectation of Y .
Suppose we use the average value Y1+...+Yt

t
as an estimate of E[Y ]. How large does t need to

be so as to get an estimate within the range (1± ε)E[Y ] ? In order to do this we will apply
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Chebyshev’s inequality. Let Z = Y1+...+Yt
t

Note that

E[Z] = E[Y ]

Var[Z] =
Var[Y ]

t

Pr(|Z − E[Z]| > εE[Z]) ≤ Var[Z]

(εE[Z])2
(Chebyshev)

=
Var[Y ]

ε2t(E[Y ])2
≤ 1

ε2t

The last inequality follows since Var[Y ] ≤ (E[Y ])2. We say that we get a good estimate if our
estimate is within a factor of 1± ε of the correct value, otherwise we say that the estimate
is bad. The above calculation shows that the probability that our estimate is bad is at most
1
ε2t

. Suppose we set t = 4/ε2. Then the probability of a bad estimate is at most 1/4.

Boosting the success probability

This is a pretty good scheme, but note that there is a fairly large probability 1/4 of failure,
i.e. of getting a bad estimate. How can we drive down the probability of failure to some
specified (small) value δ ? One option is to take make t large enough such that the failure
probability we get from Chebyshev’s inequality is less than δ. If we do this, we need t > 4

ε2δ
.

Note that t is the size of our sketch. Using this approach, we need a really large sketch size
to drive the failure probability down to a small value. (think of δ = 1/106 for example).

Here is a better approach. We construct s groups of 4/ε2 independent random variables
each and compute the average value (mean) for each of these groups. Note that there are
a total of 4s/ε2 independent copies of the random variable Y in this scheme. How do we
combine the estimates obtained from different groups ? Here is the twist: we compute the
median of the values computed by each group and use the median as our estimate.

Why is this a good scheme ? How large does s need to be to get a failure probability of
δ ? Recall that, for any group, the probability that the estimate of that group is bad is at
most 1/4. How could the median of the s values be bad ? If the median of the s values is
too low, then at least half of the s estimates of the groups must be too low. On the other
hand, if the median of the s values is too high, then at least half of the s estimates of the
groups must be too high. In either case, if the median is a bad estimator, then at least half
of the estimates from the s groups must be bad. Now the expected number of bad estimates
is at most s/4. By Chernoff bounds, the probability that the number of bad estimates is at
least s/2 is e−(2 ln 2−2+1)s/4 < e−s/11 This is an upper bound on the failure probability of our
procedure. In order to get this failure probability to be less than δ, we set s = 11 ln(1/δ).
This is a big win over the earlier proposal which required increasing the number of random
variables (and hence the size of the sketch) by a factor of 1/δ. Again, think of a really low
failure probability δ = 1/106.

To recap, our overal scheme is to take s = 11 ln(1/δ) groups of 4/ε2 copies of the random
variable Y . We compute the mean of the random variables in each group and compute the
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median of the means obtained. The final value obtained is guaranted to be within (1±ε)E[Y ]
with probability 1− δ. This median of means scheme and its analysis occurs frequently and
is useful to keep in mind.

Let’s summarize what we accomplished. We constructed a random variable Y and by
using a sketch of size (44/ε2) log(1/δ), we were able to estimate E[Y ] with high accuracy and
low failiure probability. Also E[Y ] = 1/(k + 1) where k is the number of distinct queries in
the log. If A is the estimate we obtain for E[Y ], we use 1/A as an estimate for k the number
of distinct queries. Note that with high probability, A is guaranteed to be within (1± ε) of
E[Y ] = 1/(k + 1). Hence with high probability, 1/A is guaranteed to be within the range
(1± ε)(k + 1).

This sounds pretty amazing! Compare this to the brute force method of storing a table
with the set of distinct queries in it (space linear in the number of disitinct elements). This
method actually requires only a constant amount of storage ! Of course, the constant depends
on the quality of the approximation and the failure probability we are willing to tolerate,
but it is independent of the actual number of distinct queries ! Who would have thought
something like this was possible ?

But lets not get ahead of ourselves. We left a gaping hole in our scheme by making the
big assumption up front that the hash function h : U → [0, 1] was a random hash function.
Of course, we cannot really pick a random hash function, so we need to replace this with
something else. (Think about why we cannot really pick a truly random hash function where
the hash values are mutually independent – how would you represent such a hash function?
What’s wrong with using a hash function based on a pseudorandom number generator such
as rand or drand48 in C or random in java? )

Fortunately, it turns out that we can replace the random hash function by a simple
pairwise independent hash function of the form h(x) = (ax+b mod p)

p
. The process of producing

an estimate using this hash family differs slightly from what we did here assuming completely
random hash functions (means are replaced by medians etc), but the basic approach is
similar. It is not too difficult to analyze this estimator and prove that it produces an
estimate in the range [k/3, 3k] with high probability if k is the number of distinct queries.
It turns out that one can also get estimates that are good to within any degree of accuracy
by modifying the estimator somewhat, but we will not explore this here.
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