Precept 3

COS 461



Concurrency is Useful

* Multi Processor/Core
* Multiple Inputs

e Don’t wait on slow devices



Methods for Concurrency

* One process per client has disadvantages:
— High overhead — fork+exit ~ 100 psec
— Hard to share state across clients
— Maximum number of processes limited

e Concurrency through threads (MT)
— Data races and deadlock make programming tricky

— Must allocate one stack per request

— Many thread implementations block on some I/O or
have heavy thread-switch overhead

* Non-blocking read/write calls
— Unusual programming model



Fork() review

* |t takes a process, clones its memory and
starts a new process at a separate address
space. (including file descriptors)

* |PC for parent <-> child communication

* Not very efficient (memory and time) for a lot
of small requests - ~200 us

Fork()

Parent Child



Threads

Lightweight processes (10 — 100 x faster)
Most memory is not copied

Threads share: code, most data and file
descriptors

Unique thread ID, set of registers, stack

pointer, local variable stack, return address,
errno



Possible pitfalls of threads

e Racing conditions (on data)
— Locking and synchronization required

* Thread-safe code (certain C library routines
are not safe — e.g. strtok() vs strtok_r() )

* Lookout for global or static variables



Pitfalls in Concurrency

* Deadlock: two processes block each other by
holding onto resources that the other needs

* Livelock: processes change state but never
progress (resource starvation)

— Especially threads — why?



Efficient Concurency

* Have to control # of threads/processes:

— thrashing: too many threads/processes contend

and may place excessive load on (a) CPU (b)
memory

— too much time spent accessing the resource =>
minimal work done overall

* latency: creation/termination of threads/
processes can be expensive for each request



Thread/Proc. pool model

At the beginning of the program we create a
certain number of threads/proc.

Keep track of threads that are busy / free by
placing them in a ‘free’ queue

Assign new requests to free threads

Tuning can be used to optimize # of
concurrent executions

— prevent thrashing



Network Events — New Model

Old Model: multiple concurrent
executions each of which use
blocking calls

New Model: a single execution and a
single call blocked over multiple
sockets. Waits for any one of the
sockets to have data.



non-blocking + select()

* non-blocking 1/0

— Do not wait for data/ability to write
* If no data yet => return error.

— e.g., recv() returns EWOULDBLOCK or EAGAIN if
nothing to read

e select()

— select() takes multiple descriptors and waits for one to
be ready.

* Note ability to wait on multiple descriptors at once

— once ready, data operations return immediately
e e.g. recv() returns the data immediately



Non Blocking 10 + Select()

Got Data

Copy Data

Copy Complete




Async |O

e Similar to non-blocking 10,
except a signal is delivered
*after® copy is complete.

* Signal handler processes
data.



Event Driven Programming

 Think about how your code looks with select()
— Event selection: main loop
— Event handling: call the matching event handler

* Flow of program is determined by events
— Incoming packets, user clicks, hard-drive reads/writes

e "call-back”

— Function pointer/code passed as argument to another
function to be invoked later

— What is your state during callback? Stack does not keep
context state for you.



Backlog as flow control

* Backlog is the amount of outstanding
connections that the server can queue in the

kernel

* Limiting this control the rate at which servers
can accept connections because any
connection > backlog gets dropped

* Keep this in mind when we will see other
types of flow control



Short Reads

 Why don’t we read/write one char at a time?

 Why do we do buffering on read and write in
the proxy?

A: each packet sent has headers which are
overhead. High percentage in short packets



