UNIX Sockets

COS 461 Precept 1

Clients and Servers

* Client program * Server program
— Running on end host — Running on end host
— Requests service — Provides service
— E.g., Web browser — E.g., Web server

GET /index.html

A
&_/

“Site under construction”

Clients Are Not Necessarily Human

 Example: Web crawler (or spider)
— Automated client program

— Tries to discover & download many Web pages
— Forms the basis of search engines like Google

e Spider client
— Start with a base list of popular Web sites
— Download the Web pages
— Parse the HTMLL files to extract hypertext links
— Download these Web pages, too
— And repeat, and repeat, and repeat...

Client-Server Communication

* Client “sometimes on” e Server is “always on”

— |Initiates a request to the — Services requests from many
server when interested client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn’t communicate — Doesn’t initiate contact with
directly with other clients the clients

— Needs to know server’s — Needs fixed, known address
address

Client and Server Processes

* Program vs. process
— Program: collection of code
— Process: a running program on a host

e Communication between processes

— Same end host: inter-process communication
e Governed by the operating system on the end host

— Different end hosts: exchanging messages
* Governed by the network protocols
e Client and server processes

— Client process: process that initiates communication
— Server process: process that waits to be contacted

Delivering the Data: Division of Labor

* Network
— Deliver data packet to the destination host
— Based on the destination IP address
* Operating system @
— Deliver data to the destination socket
— Based on the destination port number (e.g., 80)

* Application
— Read data from and write data to the socket
— Interpret the data (e.g., render a Web page)

Socket: End Point of Communication

* Sending message from one process to another
— Message must traverse the underlying network

* Process sends and receives through a “socket”
— In essence, the doorway leading in/out of the house

* Socket as an Application Programming Interface
— Supports the creation of network applications

User process User process

socket socket

Operating Operating
System System

ldentifying the Receiving Process

* Sending process must identify the receiver
— The receiving end host machine
— The specific socket in a process on that machine

* Receiving host
— Destination address that uniquely identifies the host
— An IP address is a 32-bit quantity

* Receiving socket
— Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity

Using Ports to Identify Services

Server host 128.2.194.242

: Service request for
lent host . 128.2.194.242:80
: : (i.e., the Web server)

Web server

......................... port 7)
Service request for ...
presesnnnsnnnnnnnnnnns, 128.2.194.242:7 Web server
i (i.e., the echo server) 5 (port 80)

5 5 5 Echo server

(port 7)

Knowing What Port Number To Use

* Popular applications have well-known ports

— E.g., port 80 for Web and port 25 for e-mail
— See http://www.iana.org/assicnments/port-numbers

* Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)

* Between 0 and 1023 (requires root to use)

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535
e Uniquely identifying traffic between the hosts
— Two IP addresses and two port numbers
— Underlying transport protocol (e.g., TCP or UDP)
— This is the “5-tuple” | discussed last lecture

10

UNIX Socket API

* Socket interface

— Originally provided in Berkeley UNIX

— Later adopted by all popular operating systems

— Simplifies porting applications to different OSes
* |In UNIX, everything is like a file

— All input is like reading a file

— All output is like writing a file

— File is represented by an integer file descriptor
* APl implemented as system calls

— E.g., connect, read, write, close, ...

Putting it All Together

¢ Client

¢ socket()
establish *
connection

—» connect()
block k’ end request ¢

read() . write()

process
request

send response

— read()

Client Creating a Socket: socket()

Creating a socket
— int socket(int domain, int type, int protocol)

— Returns a file descriptor (or handle) for the socket
— Originally designed to support any protocol suite

Domain: protocol family
— PF_INET for the Internet (IPv4)

Type: semantics of the communication
— SOCK_STREAM: reliable byte stream (TCP)
— SOCK_DGRAM: message-oriented service (UDP)

Protocol: specific protocol
— UNSPEC: unspecified
— (PF_INET and SOCK_STREAM already implies TCP)

Client: Learning Server Address/Port

e Server typically known by name and service
— E.g., “www.cnn.com” and “http”

Need to translate into IP address and port #
— E.g., “64.236.16.20” and “80”

Translating the server’s name to an address
— struct hostent *gethostbyname(char *name)

— Argument: host name (e.g., “www.cnn.com”
— Returns a structure that includes the host address

* |dentifying the service’s port number
— struct servent
*getservbyname (char *name, char *proto)
— Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)
— Static configin/etc/services

14

Client: Connecting Socket to the Server

* Client contacts the server to establish connection
— Associate the socket with the server address/port
— Acquire a local port number (assigned by the OS)
— Request connection to server, who hopefully accepts

e Establishing the connection
— int connect (int sockfd,
struct sockaddr *server_ address,
socketlen t addrlen)

— Arguments: socket descriptor, server address, and
address size

— Returns 0 on success, and -1 if an error occurs

Client: Sending Data

* Sending data
— ssize t write
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer of
data to send, and length of the buffer

— Returns the number of bytes written, and -1 on
error

Client: Receiving Data

* Receiving data

— ssize t read
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer to
place the data, size of the buffer

— Returns the number of characters read (where O
implies “end of file”), and -1 on error

— Why do you need len?
— What happens if buf’s size < len?

* Closing the socket
— int close(int sockfd)

Server: Server Preparing its Socket

* Server creates a socket and binds address/port
— Server creates a socket, just like the client does

— Server associates the socket with the port number
(and hopefully no other process is already using it!)

— Choose port “0” and let kernel assign ephemeral port

* Create a socket
— int socket (int domain,
int type, int protocol)
* Bind socket to the local address and port number
— int bind (int sockfd,
struct sockaddr *my addr,
socklen t addrlen)
— Arguments: sockfd, server address, address length
— Returns 0 on success, and -1 if an error occurs

Server: Allowing Clients to Wait

 Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait

* Define how many connections can be pending
—1int listen(int sockfd, int backlogqg)

— Arguments: socket descriptor and acceptable backlog
— Returns a 0 on success, and -1 on error

 What if too many clients arrive?

— Some requests don’t get through %@\,

— The Internet makes no promises... LY@
— And the client can always try again “_‘;

19

Server: Accepting Client Connection

s>,

D

* Now all the server can do is wait...
— Waits for connection request to arrive

— Blocking until the request arrives
— And then accepting the new request

r.

* Accept a new connection from a client
— int accept(int sockfd,

struct sockaddr *addr,
socketlen t *addrlen)

— Arguments: sockfd, structure that will provide client
address and port, and length of the structure

— Returns descriptor of socket for this new connection

Server: One Request at a Time?

e Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done
— What makes this inefficient?

 May need to time share the server machine

— Alternate between servicing different requests

* Do a little work on one request, then switch when you are
waiting for some other resource (e.g., reading file from disk)

* “Nonblocking 1/0”

— Or, use a different process/thread for each request
* Allow OS to share the CPU(s) across processes

— Or, some hybrid of these two approaches

Client and Server: Cleaning House

* Once the connection is open
— Both sides and read and write
— Two unidirectional streams of data
— In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ... using the close () system call

 What about the data still “in flight”

— Data in flight still reaches the other end
— So, server can close () before client finishes reading

Wanna See Real Clients and Servers?

 Apache Web server
— Open source server first released in 1995
— Name derives from “a patchy server” ;-)
— Software available online at http://www.apache.org

* Mozilla Web browser
— http://www.mozilla.org/developer/

* Sendmail
— http://www.sendmail.org/

BIND Domain Name System
— Client resolver and DNS server
— http://www.isc.org/index.pl?/sw/bind/

23

