%)\' Lee Lorenz, Brent Sheppard

Jenkins, if | want another yes-man, I’ll build one!

Strong Consistency and Agreement
COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/spring11/cos461/

What consistency do clients see?

e Distributed stores may store data on multiple servers

Replication provides fault-tolerance if servers fail

Allowing clients to access different servers potentially
increasing scalability (max throughput)

Does replication necessitate inconsistencies? Harder to
program, reason about, confusing for clients, ...

Consistency models

e Strict
e Strong (Linearizability)
Weaker
e Sequential Consistency
Models
 Causal
e Eventual ‘

These models describes when and how different
nodes in a distributed system / network view the
order of messages / operations

Strict Consistency

e Strongest consistency model we’ll consider

— Any read on a data item X returns value corresponding to
result of the most recent write on X

* Need an absolute global time

— “Most recent” needs to be unambiguous

— Corresponds to when operation was issued

— Impossible to implement in practice on multiprocessors

W(x,a) W(x,a)
Host 1 —> Host 1 —>
a=R (x) O=R (x) a=R (x)
Host 2 —> Host 2 —>

v X

Sequential Consistency

Definition:
All (read and write) operations on data store were executed in

some sequential order, and the operations of each individual
process appear in this sequence

Definition: When processes are running concurrently:

— Interleaving of read and write operations is acceptable, but all
processes see the same interleaving of operations

Difference from strict consistency

— No reference to the most recent time
— Absolute global time does not play a role

Implementing Sequential
Consistency

 Nodes use vector clocks to determine if two events
had distinct happens-before relationship
— If timestamp (a) < timestamp (b) = a—b

* |f ops are concurrent (\exists i,j, ali] < bli] and a[j] > b[j])

— Hosts can order ops a, b arbitrarily but consistently

OP2
OP1l OP4
OP3
>
Valid: Valid Invalid
Host1: OP1,2,3,4 Host1l: OP1,3,2,4 Host1: OP1,2,3,4

Host2: OP1,2,3,4 Host2: OP1,3,2,4 Host2: OP1,3,2,4

Examples: Sequential Consistency?

W(x,a)
Host 1 W(x.b) >
Host 2 >
Host 3 b=R (x) a=R(x)>
Host 4 b=R (x) a=R(x)>
W(x,a)
Host 1 W(x.b) >
Host 2 >
x Host 3 b=R (x) a=R(x)>
Host 4 a=R (x) b=R(x)>

(but is valid causal consistency)

e Sequential consistency is what allows databases to reorder
“isolated” (i.e. non causal) queries

e But all DB replicas see same trace, a.k.a. “serialization”

Strong Consistency / Linearizability

e Strict > Linearizability > Sequential

e All operations (OP = read, write) receive a global
time-stamp using a synchronized clock sometime
during their execution

* Linearizability:
— Requirements for sequential consistency, plus

— If ts,1(X) < ts,,(y), then OP1(x) should precede OP2(y)
in the sequence

— “Real-time requirement”: Operation “appears” as if it
showed up everywhere at same time

Linearizability

W(x,a)

Server 1

W Ack when
“committed”

Client 1

Write appears everywhere

0=R (x)| a=R(x)

Server 2

Implications of Linearizability

\

Ack when
“committed”

\

Out of band msg:
“Check out my wall post x”

W(x,a)
Server 1

]w
Client 1
Client 2

\R
a=R (x)

Server 2

10

Implementing Linearizability

Server 1 >

Ack when
“committed”

Server 2 >

If OP must appear everywhere after some time (the conceptual
“timestamp” requirement) = “all” locations must locally
commit op before server acknowledges op as committed
Implication: Linearizability and “low” latency mutually exclusive

- e.g., might involve wide-area writes

11

Implementing Linearizability

W(x,a)
Server 1 e >
\ '.' ‘.“.'\ Ack when
VY.' i sl”committed”
11 i
HHE
H
|] 1\
R
nol
ol
il
R
1 11 1
T
Server 2 >
W(x,b)

e Algorithm not quite as simple as just copying to other server
before replying with ACK: Recall that all must agree on ordering

e Both see eithera — b or b — a, but not mixed
 Both a and b appear everywhere as soon as committed

Consistency
.|.

Availability

Data replication with linearizability

* Master replica model
— All ops (& ordering) happens at single master node
— Master replicates data to secondary

* Multi-master model
— Read/write anywhere
— Replicas order and replicate content before returning

Single-master: Two-phase commit

* Marriage ceremony Do you?
| do.

Do you?
| do.
| now pronounce...

Prepare

Commit

* Theater Ready on the set?
Ready!
Action!

e Contract law Offer
Signature

Deal / lawsuit

e - e

Two-phase commit (2PC) protocol

16

WRITE
= — e,

READY Replicas
& 7
All prepared? COMMIT
i
ACK
All ack’d? (*H

ACK

What about failures?

* |f one or more acceptor (< F) fails:
— Can still ensure linearizability if |[R| + |[W| >N +F

— “read” and “write” quorums of acceptors overlap in at
least 1 non-failed node

 |f the leader fails?
— Lose availability: system not longer “live”

* Pick a new leader?
— Need to make sure everybody agrees on leader!
— Need to make sure that “group” is known

Consensus / Agreement Problem

* Goal: N processes want to agree on a value

* Desired properties:

— Correctness (safety):

* All N nodes agree on the same value
* The agreed value has been proposed by some node

— Fault-tolerance:
* |f < F faults in a window, consensus reached eventually
* Liveness not guaranteed: If > F failures, no consensus
* Given goal of F, what is N?
— “Crash” faults need 2F+1 processes
— “Malicious” faults (called Byzantine) need 3F+1 processes

Paxos Algorithm

* Setup

— Each node runs proposer (leader), acceptor, and learner

e Basic approach
— One or more node decides to act like a leader
— Leader proposes value, solicits acceptance from acceptors

— Leader announces chosen value to learners

Why is agreement hard?

(Don’t we learn that in kindergarten?)

What if >1 nodes think they’re leaders simultaneously?
What if there is a network partition?
What if a leader crashes in the middle of solicitation?

What if a leader crashes after deciding but before
broadcasting commit?

What if the new leader proposes different values than
already committed value?

20

Strawman solutions

* Designate a single node X as acceptor
— Each proposer sends its value to X
— X decides on one of the values, announces to all learners

— Problem!
 Failure of acceptor halts decision = need multiple acceptors

e Each proposer (leader) propose to all acceptors
— Each acceptor accepts first proposal received, rejects rest
— If leader receives ACKs from a majority, chooses its value
* There is at most 1 majority, hence single value chosen
— Leader sends chosen value to all learners

— Problems!
e With multiple simultaneous proposals, may be no majority
* What if winning leader dies before sending chosen value?

Paxos’ solution

* Each acceptor must be able to accept multiple proposals

* Order proposals by proposal #

— If a proposal with value v is chosen, all higher proposals will
also have value v

e Each node maintains:

— ta, va: highest proposal # accepted and its corresponding
accepted value

— tmax: highest proposal # seen
— tmy: my proposal # in the current Paxos

Paxos (Three phases)

Phase 1 (Prepare) Phase 2 (Accept) Phase 3 (Decide)

« Node decides to * If leader gets <prep-ok,

become leader t, v>from majority

— If v==null, leader
picks v,,. Elsev =w

* If leader gets acc-
ok from majority

— Chooses ty > tax — Send <decide, va>

_ Sends < to all nodes
€hds <prepare, - Send <accept, t,,, v, >
tn,> toall nodes to all nodes e If leader fails to
« Acceptor upon * |f leader fails to get fet accept—gtk
receiving <prep, t> majority, delay, restart rom majority
¢ — Delay and restart
t < tmax » Upon <accept, t, v>
reply <prep-reject> If t < tmax
Else reply with <accept-reject>
tmax =t Else
reply <prep-ok, ta, va> ta=t;va=v; tmax=1

reply with <accept-ok>

Paxos operation: an example

tmax=N0:0 tmax=N1:0 tmax=N2:0
ta =va=null ta = va = null ta =va = null

Prepare, N1:1 Prepare, N1:1
tmax= N1:1 \

ok, ta= va=null tmax = N1:1
ta = null ok, ta=va=null ta = null
va = null va = null

Accept, N1:1, vall

/ Accept, N1:1, vall
tmax = N1:1 \ tmax=N1:1
Kk)

ta=N1:1 ok ta = N1:1
va = vall va = vall
Decide, vall
/ Decide, vall

Node O Node 1 Node 2

Combining Paxos and 2PC

e Use Paxos for view-change

— If anybody notices current master unavailable, or
one or more replicas unavailable

— Propose view change Paxos to establish new group:
* Value agreed upon = <2PC Master, {2PC Replicas} >

e Use 2PC for actual data

— Writes go to master for two-phase commit
— Reads go to acceptors and/or master

e Note: no liveness if can’t communicate with
majority of nodes from previous view

CAP Conjecture

Systems can have two of:

— C: Strong consistency

— A: Availability

— P: Tolerance to network partitions

...But not all three

Two-phase commit: CA
Paxos: CP
Eventual consistency: AP

