

Network and Communication Security: HTTPS, IP Sec, DNS-Sec

Section 8.4

COS 461: Computer Networks
Spring 2011

Mike Freedman

http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Recall basic security properties

- Confidentiality: Concealment of information or resources
- Authenticity: Identification and assurance of origin of info
- Integrity: Trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability: Ability to use desired info or resource
- Non-repudiation: Offer of evidence that a party indeed is sender or a receiver of certain information
- Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Use of encryption and MAC/signatures

Confidentiality (Encryption)

Sender:

- Compute $C = Enc_K(M)$
- Send C

Receiver:

• Recover $M = Dec_{\kappa}(C)$

<u>Auth/Integrity (MAC / Signature)</u>

Sender:

- Compute $s = Sig_{\kappa}(Hash(M))$
- Send <M, s>

Receiver:

- Computer s' = Ver_K(Hash (M))
- Check s' == s

These are simplified forms of the actual algorithms

HTTP Security

"Securing" HTTP

Threat model

- Eavesdropper listening on conversation (confidentiality)
- Man-in-the-middle modifying content (integrity)
- Adversary impersonating desired website (authentication, and confidentiality)

Enter HTTP-S

- HTTP sits on top of secure channel (SSL/TLS)
- All (HTTP) bytes written to secure channel are encrypted and authenticated
- Problem: What is actually authenticated to prevent impersonation? Which keys used for crypto protocols?

Learning a valid public key

- What is that lock?
 - Securely binds domain name to public key (PK)
 - Believable only if you trust the attesting body
 - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them?
 - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party

How to authenticate PK

wellsfargo.com

https://www.wellsfargo.com/

General) Details This certificate has been verified for the following uses: SSL Server Certificate Issued To Common Name (CN) www.wellsfargo.com Wells Fargo and Company Organization (O) Organizational Unit (OU) ISG Serial Number 41:C5:CD:90:95:3C:A1:4B:C1:8A: Issued By <Not Part Of Certificate> Common Name (CN) VeriSign Trust Network Organization (O) Organizational Unit (OU) VeriSign, Inc. Validity Issued On 5/12/10 5/13/11 Expires On Fingerprints SHA1 Fingerprint C5:EC:18:24:50:9D:90:93:96:69: MD5 Fingerprint 1C:51:99:C9:EA:7B:FB:64:3F:92:F

Transport Layer Security (TLS)

(Replaces SSL)

 Send new random value, list of supported ciphers

 Send pre-secret, encrypted under PK Send new random value, digital certificate with PK

- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

Comments on HTTPS

- Note that HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS for its customers, customer must trust Akamai not to change content
- Switch to symmetric-key crypto after public-key ops
 - Symmetric-key crypto much faster (100-1000x)
 - PK crypto can encrypt message only approx. as large as key
 (1024 bits this is a simplification) afterwards uses hybrid
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure:
 each data segment received exactly once
 - Adversary can't successfully drop or replay packets

IP Security

IP Security

- There are range of app-specific security mechanisms
 - eg. TLS/HTTPS, S/MIME, PGP, Kerberos,
- But security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security mechanism framework
- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass
- Below transport layer: transparent to applications
- Can be transparent to end users
- Can provide security for individual users
- Helps secure routing architecture

IP Security Architecture

- Specification quite complex (incl. RFC 2401, 2402, 2406, 2408)
 - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - These properties, plus confidentiality

Encapsulating Security Payload (ESP)

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can do traffic analysis but is efficient
 - Good for host-to-host traffic
- Tunnel mode: Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

Why is replay protection hard?

- Replay protection goal: Eavesdropper can't capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable
- IP Sec solution: Sliding window on sequence #'s
 - All IPSec packets have a 64-bit monotonic sequence number
 - Receiver keeps track of which seqno's seen before
 - [lastest windowsize + 1 , latest]; windowsize typically 64 packets
 - Accept packet if
 - seqno > latest (and update latest)
 - Within window but has not been seen before
 - If reliable, could just remember last, and accept iff last + 1
 - But IP packets can be reordered. Reordering could be particularly bad if QoS and low-priority. Hence, some windows are 1024 packets.

DNS Security

Hierarchical naming in DNS

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
- Labeled A through M

DoS attacks on DNS Availability

- Feb. 6, 2007
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

Defense: Replication and Caching

Letter	Old name	Operator	Location
A	ns.internic.net	VeriSign	Dulles, Virginia, USA
В	ns1.isi.edu	ISI	Marina Del Rey, California, USA
С	c.psi.net	Cogent Communications	distributed using anycast
D	terp.umd.edu	University of Maryland	College Park, Maryland, USA
E	ns.nasa.gov	NASA	Mountain View, California, USA
F	ns.isc.org	ISC	distributed using anycast
G	ns.nic.ddn.mil	U.S. DoD NIC	Columbus, Ohio, USA
н	aos.arl.army.mil	U.S. Army Research Lab	Aberdeen Proving Ground, Maryland, USA
ı	nic.nordu.net	Autonomica &	distributed using anycast
J		VeriSign	distributed using anycast
K		RIPE NCC	distributed using anycast
L		ICANN	Los Angeles, California, USA
М		WIDE Project	distributed using anycast

source: wikipedia

DoS attacks on end-host using DNS

×40 amplification

580,000 open resolvers on Internet (Kaminsky-Shiffman'06)

Preventing amplication attacks

DNS Integrity: Do you trust the TLD operators?

- If domain name doesn't exist, DNS should return NXDOMAIN (non-existant domain) msg
- Verisign instead creates wildcard DNS record for all <u>.com</u> and <u>.net</u> domain names not yet registered
 - September 15 October 4, 2003
- Redirection for these domain names to Verisign web portal: "to help you search"
 - and serve you ads...and get "sponsored" search
 - Verisign and online advertising companies make money...

DNS Integrity: Was answer from authoritative server?

- DNS cache poisoning
 - Client asks for www.evil.com
 - Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
 - Thanks! I won't bother check what I asked for

DNS Integrity:

Was answer from authoritative server?

- To prevent cache poisoning, client remembers domain and 16-bit request ID (used to demux UDP response)
- But...
- DNS hijacking
 - 16 bits: 65K possible IDs
 - What rate to enumerate all in 1 sec? 64B/packet
 - 64*65536*8 / 1024 / 1024 = 32 Mbps
 - Prevention: Also randomize the DNS source port
 - Windows DNS alloc's 2500 DNS ports: ~164M possible IDs
 - Would require 80 Gbps
 - Kaminsky attack: this source port...wasn't random after all

Let's strongly believe the answer! Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity

PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
- Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of nameserver's public keys is established by a signature over the keys by the parent's private key
 - In ideal case, only roots' public keys need to be distributed out-of-band

Verifying the tree

Question: www.cnn.com ?

