COS 461: Computer Networks
Midterm Review

Spring 2011
Mike Freedman

http://www.cs.princeton.edu/courses/archive/sprll/cos461/

Internet layering:
Message, Segment, Packet, and Frame

host host
HTTP message
HTTP |<¢-----------mm e -> HTTP
TCP segment
B O L R > TCP
router router
IP packet
IP (-----B?E-E--.) IP <______l_l_)_Rz_l_c_l_(_e_t_______} IP (-IB-P.@.QK?.‘.) IP
Ethernet Ethernet SONET SOI:]ET Ethernet Ethernet
interface interface interface interface interface interface

Ethernet frame SONET frame Ethernet frame

Topics

* Link layer (Sl.4) * Transport layer (S1.38)
— Sharing a link: TDMA, FDMA — Socket interface
— Ethernet and CSMA/CD — UDP
— Wireless and CSMA/CA — TCP
— Spanning tree and switching * Reliability
— Translating addrs: DHCP / ARP * Congestion Control
* |nteractions w/ Active
 Network layer (SI.25) Queue Management
— IPv4 and addressing
_ IP forwarding * Application layer (S1.68)
— Middleboxes: NATs, firewalls, — Translating names: DNS
tunneling — HTTP and CDNs

— Overlay networks

Link Layer

Link-Layer Services

* Encoding
— Representing the Os and 1s

* Framing

— Encapsulating packet into frame, adding header
and trailer

— Using MAC addresses, rather than IP addresses

* Error detection
— Errors caused by signal attenuation, noise.
— Receiver detecting presence of errors

Multiple Access Protocol

* Single shared broadcast channel
— Avoid having multiple nodes speaking at once
— Otherwise, collisions lead to garbled data

 Multiple access protocol
— Distributed algorithm for sharing the channel
— Algorithm determines which node can transmit

* Classes of techniques

— Channel partitioning: divide channel into pieces

— Time-division multiplexing, frequency division multiplexing
— Taking turns: passing a token for right to transmit
— Random access: allow collisions, and then recover

Key Ideas of Random Access

e Carrier Sense (CS)
— Listen before speaking, and don’t interrupt
— Checking if someone else is already sending data
— ... and waiting till the other node is done

e Collision Detection (CD)
— If someone else starts talking at the same time, stop
— Realizing when two nodes are transmitting at once
— ...by detecting that the data on the wire is garbled

e Randomness
— Don 't start talking again right away
— Waiting for a random time before trying again

CSMA/CD Collision Detection

+«—— space —>

collision
detect/abort
time

Medium Access Control in 802.11

e Collision avoidance, not detection

— First exchange control frames before transmitting data

* Sender issues “Request to Send” (RTS), including length of
data

* Receiver responds with “Clear to Send” (CTS)
— If sender sees CTS, transmits data (of specified length)
— If other node sees CTS, will idle for specified period
— If other node sees RTS but not CTS, free to send

* Link-layer acknowledgment and retransmission
— CRC to detect errors
— Receiving station sends an acknowledgment
— Sending station retransmits if no ACK is received
— Giving up after a few failed transmissions

Scaling the Link Layer

* Ethernet traditionally limited by fading signal
strength in long wires
— Introduction of hubs/repeaters to rebroadcast

e Still a maximum “length” for a Ethernet segment

— Otherwise, two nodes might be too far for carrier sense
to detect concurrent broadcasts

e Further, too many nodes in shorter Ethernet can
vield low transmissions rates
— Constantly conflict with one another

Bridges/Switches: Traffic Isolation

e Switch breaks subnet into LAN segments

e Switch filters packets
— Frame only forwarded to the necessary segments
— Segments can support separate transmissions

xy switch/bridge

segment

segment segment

Comparing Hubs, Switches, Routers

Hub/ Bridge/ |Router
Repeater | Switch

Traffic isolation no yes yes
Plug and Play yes yes no
Efficient routing no no yes

Cut through yes yes no

Self Learning: Building the Table

* When a frame arrives
— Inspect the source MAC address
— Associate the address with the incoming interface
— Store the mapping in the switch table

— Use a time-to-live field to eventually forget the mapping

A@—.

Switch learns

how to reach A
@g& D

Solution: Spanning Trees

* Ensure the topology has no loops
— Avoid using some of the links when flooding
— ... to avoid forming a loop
* Spanning tree
— Sub-graph that covers all vertices but contains no cycles
— Links not in the spanning tree do not forward frames

N\
AN

15

Evolution Toward Virtual LANs

Y/

R

R

R

Red VLAN and
Switches forward traffic as needed

Group users based on organizational
structure, rather than the physical
layout of the building.

Wireless

CSMA: Carrier Sense, Multiple Access

* Multiple access: channel is shared medium

— Station: wireless host or access point

— Multiple stations may want to transmit at same time

* Carrier sense: sense channel before sending

— Station doesn’ t send when channel is busy

— To prevent collisions with ongoing transfers

— But, detecting ongoing transfers isn’ t always possible

@7
C

@

—

@k

o
A’
st

s signal
rength

@

B

@)

C

ol
C’ s signal
strength

space

CA: Collision Avoidance, Not Detection

* Collision detection in wired Ethernet
— Station listens while transmitting
— Detects collision with other transmission
— Aborts transmission and tries sending again

* Problem #1: cannot detect all collisions
— Hidden terminal problem
— Fading

CA: Collision Avoidance, Not Detection

e Collision detection in wired Ethernet
— Station listens while transmitting
— Detects collision with other transmission
— Aborts transmission and tries sending again

* Problem #1: cannot detect all collisions
— Hidden terminal problem
— Fading

* Problem #2: listening while sending
— Strength of received signhal is much smaller
— Expensive to build hardware that detects collisions

 So, 802.11 does collision avoidance, not detection

Hidden Terminal Problem

» Aand Ccan’ tsee each other, both send to B

* Occurs b/c 802.11 relies on physical carrier sensing,
which is susceptible to hidden terminal problem

20

Virtual carrier sensing

First exchange control frames before transmitting
data

— Sender issues “Request to Send” (RTS), incl. length of
data

— Receiver responds with “Clear to Send” (CTS)

If sender sees CTS, transmits data (of specified
length)

If other node sees CTS, will idle for specified period

If other node sees RTS but not CTS, free to send

Hidden Terminal Problem

» Aand Ccan’ tsee each other, both send to B

* RTS/CTS can help
— Both A and C would send RTS that B would see first
— B only responds with one CTS (say, echo’ ing A’ s RTS)
— C detects that CTS doesn’ t match and won’ t send

Exposed Terminal Problem

Sl

B sending to A, C wants to send to D
As C receives B’ s packets, carrier sense would prevent
it from sending to D, even though wouldn’ t interfere

RTS/CTS can help
— C hears RTS from B, but not CTS from A
— C knows it” s transmission will not interfere with A

— Cis safe to transmitto D

Impact on Higher-Layer Protocols

Wireless and mobility change path properties
— Wireless: higher packet loss, not from congestion
— Mobility: transient disruptions, and changes in RTT

Logically, impact should be minimal ...
— Best-effort service model remains unchanged
— TCP and UDP can (and do) run over wireless, mobile

But, performance definitely is affected

— TCP treats packet loss as a sign of congestion

— TCP tries to estimate the RTT to drive retransmissions
— TCP does not perform well under out-of-order packets

Internet not designed with these issues in mind

Network Layer

|IP Packet Structure

abit | 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: P 3-bit _
16-bit ldentification Flags | 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

26

Source Address: What if Source Lies?

* Source address should be the sending host
— But, who' s checking, anyway?
— You could send packets with any source you want

 Why would someone want to do this?
— Launch a denial-of-service attack
* Send excessive packets to the destination
* ...to overload the node, or the links leading to node
— Evade detection by “spoofing”
* But, the victim could identify you by the source address
* So, you can put someone else’ s source address in packets
— Also, an attack against the spoofed host
» Spoofed host is wrongly blamed
* Spoofed host may receive return traffic from receiver

Hierarchical Addressing: IP Prefixes

e |P addresses can be divided into two portions
— Network (left) and host (right)

e 12.34.158.0/24 is a 24-bit prefix
— Which covers 28 addresses (e.g., up to 255 hosts)

12 34 158 5

R

00001100 100100010] 10011110 00000101

B —— PP

Network (24 bits) Host (8 bits)

Classful Addressing

* |n the olden days, only fixed allocation sizes
— Class A: 0*
* Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
— Class B: 10*
 Large /16 blocks (e.g,. Princeton has 128.112.0.0/16)

— Class C: 110*
* Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)

— Class D: 1110*
* Multicast groups

—Class E: 11110*

e Reserved for future use

* This is why folks use dotted-quad notation!

CIDR: Hierarchal Address Allocation

* Prefixes are key to Internet scalability
— Address allocated in contiguous chunks (prefixes)
— Routing protocols and packet forwarding based on prefixes
— Today, routing tables contain ~200,000 prefixes (vs. 4B)

12.0.0.0/16

12.1.0.0/16 12.3.0.0/24

12.2.0.0/16 12.3.1.0/24

12.3.0.0/16

12.0.0.0/8 12.3.254.0/24

12.253.0.0/19
12.253.32.0/19
12.253.64.0/19

12.253.96.0/19
12.254.0.0116 @ 15:553.128.0/19
12.253.160.0/19

Two types of addresses

Provider independent (from IANA)

Provider allocated (from upstream ISP)

Provider allocated addresses seem to offer
more potential for aggregation (and reducing
routing table size), but not always so...

Scalability: Address Aggregation

Provider is given 201.10.0.0/21

-
- a» a» a»

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Routers in rest of Internet just need to know how to
reach 201.10.0.0/21. Provider can direct IP packets
to appropriate customer.

32

33

But, Aggregation Not Always Possible

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Multi-homed customer (201.10.6.0/23) has two
providers. Other parts of the Internet need to know
how to reach these destinations through both providers.

CIDR Makes Packet Forwarding Harder

* Forwarding table may have many matches
— E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
— The IP address 201.10.6.17 would match both!

— Use Longest Prefix Matching

Can lead to routing table expansion
— To satify LPM, need to announce /23 from both 1 and 2

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

34

Internet-wide Internet Routing

* AS-level topology
— Destinations are IP prefixes (e.g., 12.0.0.0/8)
— Nodes are Autonomous Systems (ASes)
— Edges are links and business relationships

\Q-%

”
e

Client

Web server

Middleboxes

* Middleboxes are intermediaries
— Interposed in-between the communicating hosts

— Often without knowledge of one or both parties

* Myriad uses “An abomination!”
— Network address translators — Violation of layering
— Firewalls — Hard to reason about
— Tunnel endpoints — Responsible for subtle bugs

“A practical necessity!”
— Solve real/pressing problems

— Needs not likely to go away

Port-Translating NAT

 Map outgoing packets

— Replace source address with NAT address
— Replace source port number with a new port number

— Remote hosts respond using (NAT address, new port #)
* Maintain a translation table

— Store map of (src addr, port #) to (NAT addr, new port #)
 Map incoming packets

— Consult the translation table

— Map the destination address and port number
— Local host receives the incoming packet

Transport Layer

Two Basic Transport Features

* Demultiplexing: port numbers
Server host 128.2.194.242

: Service request for
et oS " 128.2.194.242:80 Web server ™ :
. (i.e., the Web server) (port 80)
Echo server

(port 7)

 Error detection: checksums

IP payload

y
detect corruption

User Datagram Protocol (UDP)

* Datagram messaging service
— Demultiplexing of messages: port numbers

— Detecting corrupted messages: checksum

* Lightweight communication between processes
— Send messages to and receive them from a socket
— Avoid overhead and delays of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Transmission Control Protocol (TCP)

e Stream-of-bytes service
— Sends and receives a stream of bytes, not messages

* Reliable, in-order delivery
— Checksums to detect corrupted data
— Sequence numbers to detect losses and reorder data
— Acknowledgments & retransmissions for reliable delivery

 Connection oriented
— Explicit set-up and tear-down of TCP session

Flow control
— Prevent overflow of the receiver s buffer space

* Congestion control
— Adapt to network congestion for the greater good

Establishing a TCP Connection

A B
SYN

\)
S

CK
m
%
%‘\’

Each host tells
its ISN to the
other host.

 Three-way handshake to establish connection
— Host A sends a SYNchronize (open) to the host B
— Host B returns a SYN ACKnowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP “Stream of Bytes~ Service

Host A
555 5
Host B \\\\\\\\
HEEEN N

..Emulated Using TCP “Segments”

Host A
S
olo|o|o o
O|—={rofwo e
(]

TCP Data < iegment sent when:

Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.

TCP Data
HoST B
YVVYY A 4
SRR T
olo|o|o o
Of—=bofw 00
(=)

Reliability: TCP Acknowledgments

Host A

ISN (initial sequence number)

4"

Sequence humber | [— T Tcp

ACK sequence
humber = next
expected byte

TCP Data | [
HOST B

:"%

Timeout

_Timeout

Pack
\et"
Aok

Packet lost

Detecting losses

~-{—Pack
| \et>

Timeout

_Timeout

Pack
\et"
| hoK

ACK lost
DUPLICATE
PACKET

__Timeout

Timeout

Early timeout
DUPLICATE
PACKETS

Flow control: Sliding window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver
— ... though not too far ahead

Sending process

TCP | ast byte writte&(TCP ﬁst byte read

Last byte ACKed Next byte expected

Last byte sent Last byte received

Where Congestion Happens: Links

* Simple resource allocation: FIFO queue & drop-tail

e Access to the bandwidth: first-in first-out queue

— Packets transmitted in the order they arrive

-

B

>

e Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

>

TCP Congestion Window

* Each TCP sender maintains a congestion window
— Maximum number of bytes to have in transit
— |.e., number of bytes still awaiting acknowledgments

* Adapting the congestion window
— Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find the right transfer rate

* Both good and bad

— Pro: avoids having explicit feedback from network
— Con: under-shooting and over-shooting the rate

Leads to the TCP “Sawtooth”

Window

Loss

e

T~

But, could take a long
time to get started!

{

Slow Start and the TCP Sawtooth

Window
| Duplicate ACK

Loss /

/4///

A
AN
—\ . p
Exponential

“slow start”

Repeating Slow Start After Timeout

Window

Timeout

Loss ///

// //

A

>

) t

Slow start in operation
until it reaches half of
previous cwnd.

Extensions

* Tail drop in routers lead to bursty loss and
synchronization of senders

— Led to Random Early Detection (RED)

* Packets dropped and retransmission when
unnecessary

— Led to Explicit Congestion Notification (ECN)

Problems with tail drop

* Under stable conditions, queue almost always
full

— Leads to high latency for all traffic

* Possibly unfair for flows with small windows

— Larger flows may fast retransmit (detecting loss
through Trip Dup ACKs), small flows may have to
wait for timeout

* Window synchronization

— More on this later...

Fair Queuing (FQ)

Maintains separate queue per flow

Ensures no flow consumes more than its 1/n share
— Variation: weighted fair queuing (WFQ)
If all packets were same length, would be easy

If non-work-conserving (resources can go idle), also
would be easy, yet lower utilization

Fow? | | | | [[] d
R
Flow2 | | | [[]| R(:)l:)?n Egress Link
Flow3 | | | [[]| Service
Fow4 | | | | [[]

Fair Queuing Basics

* Track how much time each flow has used link

— Compute time used if it transmits next packet

* Send packet from flow that will have lowest
use if it transmits

— Why not flow with smallest use so far?
— Because next packet may be huge!

FQ Algorithm

* Imagine clock tick per bit, then tx time ~
length

Finish time F, = max (F,;, Arrive time A,) +
Length P,
* Calculate estimated F, for all queued packets

* Transmit packet with lowest F, next

Flow 1 Flow 2 Output

o lie s

n 0O

FQ Algorithm (2)

* Problem: Can’t preempt current tx packet

* Result: Inactive flows (A > F) are penalized
— Standard algorithm considers no history
— Each flow gets fair share only when packets

queued
Flow 1 Flow 2
(arriving) (transmitting) Output

e m

58

FQ Algorithm (3)

 Approach: give more promptness to flows utilizing
less bandwidth historically

* Bid B,=max (F_;, A, —98) +P,

— Intuition: with larger 6, scheduling decisions calculated by
last tx time F._; more frequently, thus preferring slower flows

* FQ achieves max-min fairness

— First priority: maximize the minimum rate of any active flows

— Second priority: maximize the second min rate, etc.

Uses of (W)FQ

e Scalability
— # queues must be equal to # flows

— But, can be used on edge routers, low speed
links, or shared end hosts

 (W)FQ can be for classes of traffic, not just
flows

— Use IP TOS bits to mark “importance”

— Part of “Differentiated Services~ architecture for
“Quality-of-Service” (QoS)

Bursty Loss From Drop-Tail Queuing

 TCP depends on packet loss
— Packet loss is indication of congestion
— And TCP drives network into loss by additive rate increase

* Drop-tail queuing leads to bursty loss

— If link is congested, many packets encounter full queue
— Thus, loss synchronization:

* Many flows lose one or more packets

* |In response, many flows divide sending rate in half

l[——>

Slow Feedback from Drop Tail

* Feedback comes when buffer is completely full
— ... even though the buffer has been filling for a while

* Plus, the filling buffer is increasing RTT

— ... making detection even slower

 Might be better to give early feedback
— And get 1-2 connections to slow down before it’ s too late

l[——>

Random Early Detection (RED)

e Basicidea of RED
— Router notices that queue is getting backlogged
— ... and randomly drops packets to signal congestion

e Packet drop probability
— Drop probability increases as queue length increases
— Else, set drop probability as function of avg queue length
and time since last drop

Queue length

1

Drop
Probability

0

Average Queue Length

Properties of RED

Drops packets before queue is full
— In the hope of reducing the rates of some flows

Drops packet in proportion to each flow’ s rate
— High-rate flows have more packets
— ... and, hence, a higher chance of being selected

Drops are spaced out in time
— Which should help desynchronize the TCP senders

Tolerant of burstiness in the traffic
— By basing the decisions on average queue length

Problems With RED

 Hard to get tunable parameters just right
— How early to start dropping packets?
— What slope for increase in drop probability?
— What time scale for averaging queue length?

 RED has mixed adoption in practice
— If parameters aren’ t set right, RED doesn’ t help
— Hard to know how to set the parameters

 Many other variations in research community
— Names like “Blue” (self-tuning), “FRED”...

Feedback: From loss to notification

e Early dropping of packets
— Good: gives early feedback
— Bad: has to drop the packet to give the feedback

* Explicit Congestion Notification
— Router marks the packet with an ECN bit
— Sending host interprets as a sign of congestion

Explicit Congestion Notification

 Must be supported by router, sender, AND receiver
— End-hosts determine if ECN-capable during TCP handshake

 ECN involves all three parties (and 4 header bits)
1. Sender marks “ECN-capable” when sending

2. If router sees “ECN- capable and experiencing congestion,
router marks packet as "ECN congestion experienced”

3. If receiver sees “congestion experlenced marks “ECN echo”
flagin responses until congestion ACK’ d

4. I‘f sender sees “ECN echo’, regluces cwnd and marks
congestion window reduced " flag in next TCP packet

* Why extra ECN flag? Congestion could happen in either
direction, want sender to react to forward direction

* Why CRW ACK? ECN-echo could be lost, but we ideally
only respond to congestion in forward direction

Application layer

DNS
HTTP and CDNs
P2P and DHTs

68

Three Hierarchical Assighment Processes

 Host name: www.cs.princeton.edu

— Domain: registrar for each top-level domain (e.g., .edu)
— Host name: local administrator assigns to each host

 IP addresses: 128.112.7.156

— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP

* MAC addresses: 00-15-C5-49-04-A9
— Blocks: assigned to vendors by the IEEE

— Adapters: assigned by the vendor from its block

Mapping Between ldentifiers

e Domain Name System (DNS)
— Given a host name, provide the IP address
— Given an IP address, provide the host name

* Dynamic Host Configuration Protocol (DHCP)
— Given a MAC address, assigh a unique IP address
— ... and tell host other stuff about the Local Area Network
— To automate the boot-strapping process

e Address Resolution Protocol (ARP)
— Given an IP address, provide the MAC address
— To enable communication within the Local Area Network

DHCP and ARP use L2 broadcast....DNS is app-layer protocol

Recursive vs. lterative Queries

o Recu rsive query root DNS server
— Ask server to get i
answer for you //
TLD DNS server
— E.g., request 1 and 4
response 3 local DNS server n : 5 n

dns.poly.edu

* |terative query

— Ask server who A AN
to ask next . w
— Eg, all other @ authoritative DNS server
) dns.cs.umass.edu
request-response requesting host

. cis.poly.edu
pairs

One page, lots of objects
Pt v sV e A S,

Web |Images Video News Maps more» New! Upload your videos

Search I Advanced Video Search

Top 100 Comedy Music videos Movies Sports Animation TV shows

A Good comic video found
some where on Net

Avg: filiRll 42833 ratings
All time views: 6,888,549 »

Copyrighted to who ever has created it
1 min 3 sec - May 25, 2006

Browse: orkut, awesome, url, more »

Add tag - Mark tag as Spam

-for| Windows /Mac Jid |

A Good comic video found some where
on Net

« Prev - Next video »

Playlist - Details - From user - Related -
Comments - Flag as inappropriate

° Dynamlc HTM L: 19.6 KB Continuous Playback: ON - OFF

A Good comic video
found some where on

e Static content: 6.2 MB .
Pixar Hippo & Dog The

ever has created it
* 1 flash movie - 5 style sheets —

. . Lion Sleeps Tonight
* 18 images - 3 scripts golasarpion

TCP Interaction: Short Transfers

Multiple connection setups
— Three-way handshake each time

Round-trip time estimation
— Maybe large at the start of a connection (e.g., 3 seconds)
— Leads to latency in detecting lost packets

Congestion window
— Small value at beginning of connection (e.g., 1 MSS)
— May not reach a high value before transfer is done

Detecting packet loss

— Timeout: slow ®
— Duplicate ACK
* Requires many packets in flight
« Which doesn’ t happen for very short transfers @

Persistent HTTP

Persistent without pipelining:

Non-persistent HTTP issues:

Requires 2 RTTs per object

OS must allocate resources
for each TCP connection

But browsers often open
parallel TCP connections to

fetch referenced objects

Persistent HTTP:

Server leaves connection
open after sending response

Subsequent HTTP messages
between same client/server
are sent over connection

Client issues new request only
when previous response has

been received
One RTT for each object

Persistent with pipelining:

Default in HTTP/1.1

Client sends requests as soon as
it encounters referenced object

As little as one RTT for all the
referenced objects

74

