
3D Rasterization II

COS 426

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Rasterization
• Scan conversion (last time)

 Determine which pixels to fill

Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Shading
• How do we choose a color for each filled pixel?

Emphasis on methods that can
be implemented in hardware

P1

P2

P3

Ray Casting
• Simplest shading approach is to perform

independent lighting calculation for every pixel

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

Polygon Shading
• Can take advantage of spatial coherence

 Illumination calculations for pixels covered by same
primitive are related to each other

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Flat Shading
• What if a faceted object is illuminated only by

directional light sources and is either diffuse or
viewed from infinitely far away

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

Flat Shading
• One illumination calculation per polygon

 Assign all pixels inside each polygon the same color

N

Flat Shading
• Objects look like they are composed of polygons

 OK for polyhedral objects
 Not so good for smooth surfaces

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Gouraud Shading
• What if smooth surface is represented by

polygonal mesh with a normal at each vertex?

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

Watt Plate 7

Gouraud Shading
• Method 1: One lighting calculation per vertex

 Assign pixels inside polygon by interpolating colors
computed at vertices

Gouraud Shading
• Bilinearly interpolate colors at vertices

down and across scan lines

Gouraud Shading
• Smooth shading over adjacent polygons

 Curved surfaces
 Illumination highlights
 Soft shadows

Mesh with shared normals at vertices
Watt Plate 7

Gouraud Shading
• Produces smoothly shaded polygonal mesh

 Piecewise linear approximation
 Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Phong Shading
• What if polygonal mesh is too coarse to capture

illumination effects in polygon interiors?

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

Phong Shading
• One lighting calculation per pixel

 Approximate surface normals for points inside polygons
by bilinear interpolation of normals from vertices

Phong Shading
• Bilinearly interpolate surface normals at vertices

down and across scan lines

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7

Shading Issues
• Problems with interpolated shading:

 Polygonal silhouettes
 Perspective distortion
 Orientation dependence (due to bilinear interpolation)
 Problems computing shared vertex normals
 Problems at T-vertices

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Surface
ImageTexture

Textures
• Describe color variation in interior of 3D polygon

 When scan converting a polygon, vary pixel colors
according to values fetched from a texture image

Angel Figure 9.3

Surface Textures
• Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture

Surface Textures
• Add visual detail to surfaces of 3D objects

[Daren Horley]

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Texture mapping

Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering

Texture Mapping
• Steps:

 Define texture
 Specify mapping from texture to surface
 Lookup texture values during scan conversion

(0,0)

(1,0)

(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Mapping
• When scan convert, map from …

 image coordinate system (x,y) to
 modeling coordinate system (u,v) to
 texture image (t,s)

(0,0)

(1,0)

(1,1)
(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Mapping

[Allison Klein]

• Texture mapping is a 2D projective transformation
 texture coordinate system: (t,s) to
 image coordinate system (x,y)

Texture Mapping
• Scan conversion

 Interpolate texture coordinates down/across scan lines
 Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or
» Perspective divide at each pixel

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering

Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color
at each pixel in image

Texture Filtering

Angel Figure 9.5

• Aliasing is a problem

Point sampling Area filtering

Texture Filtering
• Ideally, use elliptically shaped convolution filters

In practice, use rectangles

Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
 Can prefiltering images

» Mip maps
» Summed area tables

Magnification Minification

Mip Maps
• Keep textures prefiltered at multiple resolutions

 For each pixel, linearly interpolate between
two closest levels (e.g., trilinear filtering)

 Fast, easy for hardware

Summed-area tables
• At each texel keep sum of all values down & right

 To compute sum of all values within a rectangle,
simply subtract two entries

 Better ability to capture very oblique projections
 But, cannot store values in a single byte

S1

S2

Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?

Option: Varieties of projections

[Paul Bourke]

Option: unfold the surface

[Piponi2000]

Option: make an atlas

[Sander2001]

charts atlas surface

Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering

Modulation textures

)))()(((),(SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI ++•+•++= ∑

Map texture values to scale factor

W
oo

d
te

xt
ur

e

Texture
value

Illumination Mapping

SSTTL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

Map texture values to surface material parameter
 KA
 KD
 KS
 KT
 n

KT = T(s,t)

Bump Mapping
Texture values perturb surface normals

Bump Mapping

H&B Figure 14.100

Environment Mapping
Texture values are reflected off surface patch

H&B Figure 14.93

Image-Based Rendering
Map photographic textures to provide details for

coarsely detailed polygonal model

Solid textures
Texture values indexed

by 3D location (x,y,z)
• Expensive storage, or

• Compute on the fly,
e.g. Perlin noise

Texture Mapping Summary
• Texture mapping methods

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Volume textures

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

Visible surface determination
 Figure out which surface is front-most at every pixel

• Make sure only front-most contributes to color
at every pixel

Visible Surface Determination

Depth sort
• “Painter’s algorithm”

 Sort surfaces in order of decreasing maximum depth
 Scan convert surfaces in back-to-front order,

overwriting pixels

A
BE D

C

depth sort

eye

3D Rendering Pipeline
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Depth sort

Depth sort comments
 O(n log n)
 Better with frame coherence?
 Implemented in software
 Render every polygon
 Often use BSP-tree or

static list ordering

Z-Buffer
• Color & depth of closest object for every pixel

 Update only pixels whose depth is closer than in buffer
 Depths are interpolated from vertices, just like colors

Z-Buffer
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates
Z-Buffer

Z-buffer comments
+ Polygons rasterized in any order
+ Process one polygon at a time
+ Suitable for hardware pipeline
- Requires extra memory for z-buffer
- Subject to aliasing (A-buffer)
 Commonly in hardware

Hidden Surface Removal Algorithms

[Sutherland ‘74]

Rasterization Summary
• Scan conversion

 Sweep-line algorithm

• Shading algorithms
 Flat, Gouraud

• Texture mapping
 Mipmaps

• Visibiliity determination
 Z-buffer

This is all in hardware

GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA

Actually …
• Graphics hardware is programmable

www.nvidia.com/cuda

Trend …
• GPU is general-purpose parallel computer

www.nvidia.com/cuda

	3D Rasterization II
	3D Rendering Pipeline (for direct illumination)
	Rasterization
	Rasterization
	Shading
	Ray Casting
	Polygon Shading
	Polygon Shading Algorithms
	Polygon Shading Algorithms
	Flat Shading
	Flat Shading
	Flat Shading
	Polygon Shading Algorithms
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Polygon Shading Algorithms
	Phong Shading
	Phong Shading
	Phong Shading
	Polygon Shading Algorithms
	Shading Issues
	Rasterization
	Textures
	Surface Textures
	Surface Textures
	3D Rendering Pipeline (for direct illumination)
	Texture Mapping Overview
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping Overview
	Texture Filtering
	Texture Filtering
	Texture Filtering
	Texture Filtering
	Mip Maps
	Summed-area tables
	Texture Mapping Overview
	Parameterization
	Option: Varieties of projections
	Option: unfold the surface
	Option: make an atlas
	Texture Mapping Overview
	Modulation textures
	Illumination Mapping
	Bump Mapping
	Bump Mapping
	Environment Mapping
	Image-Based Rendering
	Solid textures
	Texture Mapping Summary
	Rasterization
	Visible Surface Determination
	Depth sort
	3D Rendering Pipeline
	Z-Buffer
	Z-Buffer
	Hidden Surface Removal Algorithms
	Rasterization Summary
	GPU Architecture
	Actually …
	Trend …

