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Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel



Rasterization
• Scan conversion (last time)

 Determine which pixels to fill

Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel



Shading
• How do we choose a color for each filled pixel? 

Emphasis on methods that can 
be implemented in hardware 

P1

P2

P3



Ray Casting
• Simplest shading approach is to perform 

independent lighting calculation for every pixel
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Polygon Shading
• Can take advantage of spatial coherence

 Illumination calculations for pixels covered by same 
primitive are related to each other
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Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Flat Shading
• What if a faceted object is illuminated only by 

directional light sources and is either diffuse or 
viewed from infinitely far away
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Flat Shading
• One illumination calculation per polygon 

 Assign all pixels inside each polygon the same color

N



Flat Shading
• Objects look like they are composed of polygons

 OK for polyhedral objects
 Not so good for smooth surfaces



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Gouraud Shading
• What if smooth surface is represented by  

polygonal mesh with a normal at each vertex?
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Gouraud Shading
• Method 1: One lighting calculation per vertex

 Assign pixels inside polygon by interpolating colors 
computed at vertices



Gouraud Shading
• Bilinearly interpolate colors at vertices

down and across scan lines



Gouraud Shading
• Smooth shading over adjacent polygons

 Curved surfaces
 Illumination highlights
 Soft shadows

Mesh with shared normals at vertices
Watt Plate 7



Gouraud Shading
• Produces smoothly shaded polygonal mesh

 Piecewise linear approximation 
 Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Phong Shading
• What if polygonal mesh is too coarse to capture 

illumination effects in polygon interiors?
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Phong Shading
• One lighting calculation per pixel

 Approximate surface normals for points inside polygons 
by bilinear interpolation of normals from vertices



Phong Shading
• Bilinearly interpolate surface normals at vertices 

down and across scan lines



Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7



Shading Issues
• Problems with interpolated shading:

 Polygonal silhouettes
 Perspective distortion
 Orientation dependence (due to bilinear interpolation)
 Problems computing shared vertex normals
 Problems at T-vertices



Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel



Surface
ImageTexture

Textures
• Describe color variation in interior of 3D polygon

 When scan converting a polygon, vary pixel colors 
according to values fetched from a texture image

Angel Figure 9.3



Surface Textures
• Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture



Surface Textures
• Add visual detail to surfaces of 3D objects

[Daren Horley]
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Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering



Texture Mapping
• Steps:

 Define texture
 Specify mapping from texture to surface
 Lookup texture values during scan conversion
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Texture Mapping
• When scan convert, map from …

 image coordinate system (x,y) to
 modeling coordinate system (u,v) to
 texture image (t,s)
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Texture Mapping

[Allison Klein]

• Texture mapping is a 2D projective transformation
 texture coordinate system: (t,s) to
 image coordinate system (x,y)



Texture Mapping
• Scan conversion

 Interpolate texture coordinates down/across scan lines
 Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or
» Perspective divide at each pixel



Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42



Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering



Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color 
at each pixel in image



Texture Filtering

Angel Figure 9.5

• Aliasing is a problem

Point sampling Area filtering



Texture Filtering
• Ideally, use elliptically shaped convolution filters

In practice, use rectangles



Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
 Can prefiltering images 

» Mip maps
» Summed area tables

Magnification Minification



Mip Maps
• Keep textures prefiltered at multiple resolutions

 For each pixel, linearly interpolate between 
two closest levels (e.g., trilinear filtering) 

 Fast, easy for hardware



Summed-area tables
• At each texel keep sum of all values down & right

 To compute sum of all values within a rectangle,
simply subtract two entries

 Better ability to capture very oblique projections
 But, cannot store values in a single byte

S1

S2



Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering



Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?



Option: Varieties of projections

[Paul Bourke]



Option: unfold the surface

[Piponi2000]



Option: make an atlas

[Sander2001]

charts atlas surface



Texture Mapping Overview
• Texture mapping methods

 Mapping
 Filtering
 Parameterization

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering



Modulation textures
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Illumination Mapping
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Map texture values to surface material parameter
 KA
 KD
 KS
 KT
 n

KT = T(s,t)



Bump Mapping
Texture values perturb surface normals 



Bump Mapping

H&B Figure 14.100



Environment Mapping
Texture values are reflected off surface patch 

H&B Figure 14.93



Image-Based Rendering
Map photographic textures to provide details for 

coarsely detailed polygonal model



Solid textures
Texture values indexed 

by 3D location (x,y,z)
• Expensive storage, or

• Compute on the fly,
e.g. Perlin noise 



Texture Mapping Summary
• Texture mapping methods

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Volume textures



Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

Visible surface determination
 Figure out which surface is front-most at every pixel



• Make sure only front-most contributes to color 
at every pixel

Visible Surface Determination



Depth sort
• “Painter’s algorithm”

 Sort surfaces in order of decreasing maximum depth
 Scan convert surfaces in back-to-front order,

overwriting pixels

A
BE D

C

depth sort

eye
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Depth sort comments
 O(n log n)
 Better with frame coherence?
 Implemented in software
 Render every polygon
 Often use BSP-tree or

static list ordering



Z-Buffer
• Color & depth of closest object for every pixel

 Update only pixels whose depth is closer than in buffer
 Depths are interpolated from vertices, just like colors



Z-Buffer
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Z-buffer comments
+ Polygons rasterized in any order
+ Process one polygon at a time
+ Suitable for hardware pipeline
- Requires extra memory for z-buffer
- Subject to aliasing (A-buffer)
 Commonly in hardware



Hidden Surface Removal Algorithms

[Sutherland ‘74]



Rasterization Summary
• Scan conversion

 Sweep-line algorithm

• Shading algorithms
 Flat, Gouraud

• Texture mapping
 Mipmaps

• Visibiliity determination
 Z-buffer

This is all in hardware



GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA



Actually …
• Graphics hardware is programmable

www.nvidia.com/cuda



Trend …
• GPU is general-purpose parallel computer

www.nvidia.com/cuda
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