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What is a Digital Image?
A digital image is a discrete array of samples
representing a continuous 2D function

Continuous function Discrete samples



Limitations on Digital Images
• Spatial discretization

• Quantized intensity

• Approximate color (RGB)

• (Temporally discretized frames for digital video)



Image Processing
• Changing intensity/color
 Linear: scale, offset, etc.
 Nonlinear: gamma, 

saturation, etc.
 Add random noise

• Filtering over 
neighborhoods
 Blur
 Detect edges
 Sharpen
 Emboss
 Median

• Moving image locations
 Scale
 Rotate
 Warp

• Combining images
 Composite
 Morph



Digital Image Processing:
Very Similar to Analog
• Changing intensity/color
 Linear: scale, offset, etc.
 Nonlinear: gamma, 

saturation, etc.
 Add random noise

• Filtering over 
neighborhoods
 Blur
 Detect edges
 Sharpen
 Emboss
 Median

• Moving image locations
 Scale
 Rotate
 Warp

• Combining images
 Composite
 Morph



Digital Image Processing:
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Digital Image Processing:
Inherently new Operations
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 Rotate
 Warp

• Combining images
 Composite
 Morph

• Quantization

• Spatial / intensity 
tradeoff
 Dithering
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Adjusting Brightness
• Simply scale pixel components

o Must clamp to range (e.g., 0 to 1) 

Original Brighter

Note: this is “contrast” on your monitor!
“Brightness” adjusts black level (offset)



Adjusting Contrast
• Compute mean luminance L for all pixels

o luminance = 0.30*r + 0.59*g + 0.11*b

• Scale deviation from L for each pixel component
o Must clamp to range (e.g., 0 to 1)

Original More Contrast

L



Digression: Perception of Intensity
• Perception of intensity is nonlinear

Amount of light

Perceived
brightness



Modeling Nonlinear Intensity Response
• Brightness (B) usually modeled as a logarithm or 

power law of intensity (I)

• Exact curve varies with ambient light,
adaptation of eye
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Cameras
• Original cameras based on Vidicon obey power 

law for Voltage (V) vs. Intensity (I):

45.0≈
=

γ

γIV



CRT Response
• Power law for Intensity (I) vs.

applied voltage (V)

• Vidicon + CRT = almost linear!

• Other displays (e.g. LCDs) contain electronics to 
emulate this law

5.2≈
=

γ

γVI



CCD Cameras
• Camera gamma codified in NTSC standard

• CCDs have linear response to incident light

• Electronics to apply required power law

• So, pictures from most cameras (including digital 
still cameras) will have γ = 0.45

 sRGB standard: partly-linear, partly power-law curve 
well approximated by γ = 1 / 2.2



Digital Image Processing
• Changing intensity/color
 Linear: scale, offset, etc.
 Nonlinear: gamma, 
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 Add random noise
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 Rotate
 Warp
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Basic Operation: Convolution
Output value is weighted sum of values in 
neighborhood of input image
 Pattern of weights is the “filter” or “kernel”

Input

Filter

Output



Convolution with a Triangle Filter

Input Output

Filter
0.5

0.250.25



Convolution with a Triangle Filter
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Filter
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Convolution with a Triangle Filter
What if the filter runs off the end?

Input Output

Filter
0.5

0.250.25



Convolution with a Triangle Filter
Common option: normalize the filter

Input Output

0.67 Modified Filter0.33



Convolution with a Gaussian Filter

Input Output

Figure 2.4 Wolberg

Filter



Linear Filtering
2D Convolution

o Each output pixel is a linear combination of input pixels 
in neighborhood with weights prescribed by a filter

Input Image

Filter

Output Image
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Linear Filtering
2D Convolution
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Input Image
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Blur
Convolve with a filter whose entries sum to one

o Each pixel becomes a weighted average of its neighbors

Original

Blur Filter =



Edge Detection
Convolve with a filter that finds
differences between neighbor pixels 

Original Detect edges

Filter =



Sharpen
Sum detected edges with original image 

Original Sharpened

Filter =



Emboss
Convolve with a filter that highlights
gradients in particular directions

Original Embossed

Filter =



Non-Linear Filtering
Each output pixel is a non-linear function of
input pixels in neighborhood (filter depends on input)

Original Oil Stain Glass



Digital Image Processing
• Changing intensity/color
 Linear: scale, offset, etc.
 Nonlinear: gamma, 

saturation, etc.
 Add random noise

• Filtering over 
neighborhoods
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 Detect edges
 Sharpen
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 Median

• Moving image locations
 Scale
 Rotate
 Warp

• Combining images
 Composite
 Morph

• Quantization

• Spatial / intensity 
tradeoff
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Quantization
Reduce intensity resolution

o Frame buffers have limited number of bits per pixel
o Physical devices have limited dynamic range



Uniform Quantization

P(x, y) = round( I(x, y) )
where round() chooses nearest
value that can be represented.

I(x,y)

P(
x,

y)

P(x,y)
(2 bits per pixel)

I(x,y)



Uniform Quantization

8 bits 4 bits 2 bits 1 bit 

Notice contouring.

Images with decreasing bits per pixel:



Reducing Effects of Quantization

• Intensity resolution / spatial resolution tradeoff

• Dithering
o Random dither
o Ordered dither
o Error diffusion dither

• Halftoning
o Classical halftoning



Dithering
Distribute errors among pixels

o Exploit spatial integration in our eye
o Display greater range of perceptible intensities

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)



Random Dither
Randomize quantization errors

o Errors appear as noise

P(x, y) = round( I(x, y) + noise(x,y) )

I(x,y)

P(
x,

y)

I(x,y)
P(

x,
y)



Random Dither

Uniform
Quantization

(1 bit)

Random 
Dither
(1 bit)

Original
(8 bits)



Ordered Dither
Pseudo-random quantization errors

o Matrix stores pattern of threshholds

i = x mod n
j = y mod n
e = I(x,y) - trunc(I(x,y))
threshold = (D(i,j)+1)/(n2+1)
if (e > threshold) 

P(x,y) = ceil(I(x, y))
else 

P(x,y) = floor(I(x,y))

0 11/5 2/5 3/5 4/5

thresholds



Ordered Dither
Bayer’s ordered dither matrices



Ordered Dither

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither 
(1 bit)



Error Diffusion Dither
Spread quantization error over neighbor pixels

o Error dispersed to pixels right and below
o Floyd-Steinberg weights:

Figure 14.42 from H&B

3/16 + 5/16 + 1/16 + 7/16 = 1.0



Error Diffusion Dither

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither 
(1 bit)

Floyd-Steinberg
Dither 
(1 bit)



Reducing Effects of Quantization
• Dithering

o Random dither
o Ordered dither
o Error diffusion dither

Halftoning
o Classical halftoning



Classical Halftoning
Use dots of varying size to represent intensities

o Area of dots proportional to intensity in image

P(x,y)I(x,y)



Classical Halftoning

From Town Topics, Princeton



Digital Halftone Patterns
Use cluster of pixels to represent intensity

Figure 14.37 from H&B

Q: In this case, would we use four “halftoned” pixels 
in place of one original pixel?



Digital Image Processing
• Changing intensity/color
 Linear: scale, offset, etc.
 Nonlinear: gamma, 

saturation, etc.
 Add random noise

• Filtering over 
neighborhoods
 Blur
 Detect edges
 Sharpen
 Emboss
 Median

• Moving image locations
 Scale
 Rotate
 Warp

• Combining images
 Composite
 Morph

• Quantization

• Spatial / intensity 
tradeoff
 Dithering



Digital Image Processing

When implementing operations that move pixels, 
must account for the fact that digital images are 
sampled versions of continuous ones



Sampling and Reconstruction

Sampling

Continuous function

Discrete samples



Sampling and Reconstruction

Sampling

Reconstruction

Continuous function

Discrete samples

Continuous function



Sampling and Reconstruction

Figure 19.9 FvDFH



Sampling Theory
How many samples are enough?

o How many samples are required to represent a given 
signal without loss of information?

o What signals can be reconstructed without loss for a 
given sampling rate?

Reconstructed function

Original function



Sampling Theory
What happens when use too few samples?

o Aliasing

Figure 14.17 FvDFH
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Spectral Analysis
• Spatial domain:

o Function: f(x)
o Filtering: convolution

• Frequency domain:
o Function: F(u)
o Filtering: multiplication

Any signal can be written as a 
sum of periodic functions.



Fourier Transform

Figure 2.6 Wolberg



Fourier Transform
• Fourier transform:

• Inverse Fourier transform:



Sampling Theorem

• A signal can be reconstructed from its samples, 
if the original signal has no frequencies 
above 1/2 the sampling frequency - Shannon

• The minimum sampling rate for bandlimited
function is called “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.



Image Processing
• Consider reducing the image resolution

Original image 1/4  resolution



Image Processing

Resampling

• Image processing is a resampling problem



Sampling Theorem
• A signal can be reconstructed from its samples, 

if the original signal has no frequencies 
above 1/2 the sampling frequency - Shannon

Figure 14.17 FvDFHUnder-sampling

Aliasing will occur if the signal is under-sampled



Aliasing
• In general:

o Artifacts due to under-sampling or poor reconstruction

• Specifically, in graphics:
o Spatial aliasing
o Temporal aliasing

Figure 14.17 FvDFHUnder-sampling



Spatial Aliasing
Artifacts due to limited spatial resolution



Spatial Aliasing
Artifacts due to limited spatial resolution

“Jaggies”



Temporal Aliasing
Artifacts due to limited temporal resolution

o Strobing
o Flickering
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Temporal Aliasing
Artifacts due to limited temporal resolution

o Strobing
o Flickering



Antialiasing
• Sample at higher rate

o Not always possible
o Doesn’t always solve problem

• Pre-filter to form bandlimited signal
o Form bandlimited function using low-pass filter
o Trades aliasing for blurring



Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display
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Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Display



Ideal Bandlimiting Filter
• Frequency domain

• Spatial domain

Figure 4.5 Wolberg

0    fmax



Practical Image Processing
• Finite low-pass filters

o Point sampling (bad)
o Box filter
o Triangle filter
o Gaussian filter

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

C
on

vo
lu

tio
n



Scaling
• Resample with triangle or Gaussian filter

Original 1/4X 
resolution

4X 
resolution



Summary
• Image filtering

o Compute new values for image pixels based on 
function of old values  

• Halftoning and dithering
o Reduce visual artifacts due to quantization
o Distribute errors among pixels

» Exploit spatial integration in our eye

• Sampling and reconstruction
o Reduce visual artifacts due to aliasing
o Filter to avoid undersampling

» Blurring is better than aliasing
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