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Maximum-size matching in nonbipartite graphs: 

how to find augmenting paths?

Paths must alternate unmatched, matched 

edges, but parity of a vertex (odd or even 

distance from a free vertex) is ambiguous.

If parity is fixed on initial visit, can miss an If parity is fixed on initial visit, can miss an 

augmenting path.

If both parities are allowed, can find a non-

simple alternating path between free vertices: 

not augmenting



One parity, search from A: A even, B odd, C 

even, D odd, E even, F never visited; A, B C, E, 

D, F missed  
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Oboth parities, search from A: A even, B odd, C 

even, D odd, E even, C odd, B even, F odd: 

path from A to F alternating but not simple  
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Edmonds’ solution

Blossom-shrinking: Each time an odd alternating 

cycle is traversed, contract it into a single 

super-vertex.

E

A, B, C is stem; C, D, E is blossom
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Edmonds’ algorithm

Start with no matched edges.

Search from one or more free vertices along 

alternating paths.

When revisiting a visited vertex, if odd cycle, 

shrink to a super-vertex, continue search along shrink to a super-vertex, continue search along 

all unmatched incident edges.

If augmenting path found, expand blossoms on 

path, augment.

If no augmenting path found, delete all visited 

vertices.   



Search from A: A even, B odd, C even, D odd, E 

even, C odd: blossom 1(even)
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Continue search: F odd, G even, A odd: blossom 

2 (even)
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Continue search: H odd: augmenting path 2, H 

expands to A, G, F, 1, B, H expands to A, G, F, 

D, E, C, B, H
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Correctness via two lemmas

Lemma: There is an augmenting path before 
shrinking a blossom if and only if there is an 
augmenting path after.

Proof (easy half): If there is an augmenting path 
after shrinking, there is certainly one before: after shrinking, there is certainly one before: 
expand each shrunken blossom on 
augmenting path and connect two ends.  One 
is the blossom base; to connect, walk around 
the blossom from the other end, starting with 
a matched edge in the blossom.



Proof (hard half): A matching has an 

augmenting path iff it is not of maximum size.  

Suppose there is an augmenting path in the 

graph before the blossom-shrinling.  Then 

there is still an augmenting path if the edges 

along the stem of the blossom are switched along the stem of the blossom are switched 

from matched to matched and vice-versa (no 

change in matching size).  Now the blossom 

has no stem.  If the aumenting path misses 

the blossom, it is an augmenting path after 

the blossom is shrunk.
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Proof (hard half cont.): If the augmenting path 

hits the blossom, then the part from the free 

vertex not the base of the blossom to the 

blossom is an augmenting path in the 

shrunken graph: in the shrunken graph, the 

blossom is a free vertex.  Thus the shrunken 

graph with edges switched along the stem has graph with edges switched along the stem has 

an augmenting path.  Switching the edges 

along the stem back to their original state 

does not change the size of the matching in 

the shrunken graph.  Thus the original 

matching in the shrunken graph has an 

augmenting path.



Lemma: If a search from a set of free vertices finds 
no augmenting path, then no visited vertex will 
be on an augmenting path in the future.

Proof: After blossom-shrinking, the subgraph S 
induced by the set of visited vertices is bipartite, 
only odd visited vertices are adjacent to unvisited 
ones, via unmatched edges, and all the free ones, via unmatched edges, and all the free 
visited vertices are even.  If some future 
augmenting path contained a visited vertex, it 
would have to enter via an unmatched edge to a 
visited odd vertex and leave via an unmatched 
edge from a visited odd vertex.  But then S could 
not be bipartite. 



Implementation

Disjoint set data structure to keep track of 
blossoms.

Time per search = O(mα(m, m/n)
Total time = O(nmα(m, m/n)
Simplest implementation is DFS, one start vertex at 

a time.a time.

For each vertex, keep track of the blossom 
containing it, its parity, and whether it is in a 
blossom (even).

Search proceeds from even vertices via unmatched 
edges and from odd vertices via matched edges.

Even-to-even edge gives a blossom (on current 
path)


