
COS 423 Lecture 20

Nonbipartite MatchingNonbipartite Matching

© Robert E. Tarjan 2011

Maximum-size matching in nonbipartite graphs:

how to find augmenting paths?

Paths must alternate unmatched, matched

edges, but parity of a vertex (odd or even

distance from a free vertex) is ambiguous.

If parity is fixed on initial visit, can miss an If parity is fixed on initial visit, can miss an

augmenting path.

If both parities are allowed, can find a non-

simple alternating path between free vertices:

not augmenting

One parity, search from A: A even, B odd, C

even, D odd, E even, F never visited; A, B C, E,

D, F missed

A B

EDF

C

Oboth parities, search from A: A even, B odd, C

even, D odd, E even, C odd, B even, F odd:

path from A to F alternating but not simple

A B F

ED

C

Edmonds’ solution

Blossom-shrinking: Each time an odd alternating

cycle is traversed, contract it into a single

super-vertex.

E

A, B, C is stem; C, D, E is blossom

A B

D

C

Edmonds’ algorithm

Start with no matched edges.

Search from one or more free vertices along

alternating paths.

When revisiting a visited vertex, if odd cycle,

shrink to a super-vertex, continue search along shrink to a super-vertex, continue search along

all unmatched incident edges.

If augmenting path found, expand blossoms on

path, augment.

If no augmenting path found, delete all visited

vertices.

Search from A: A even, B odd, C even, D odd, E

even, C odd: blossom 1(even)

A D

G F

A

B

D

E

C

H

1

Continue search: F odd, G even, A odd: blossom

2 (even)

A D

G F

2A

B

D

E

C

H

1

2

Continue search: H odd: augmenting path 2, H

expands to A, G, F, 1, B, H expands to A, G, F,

D, E, C, B, H

A D

G F

2A

B

D

E

C

H

1

2

Correctness via two lemmas

Lemma: There is an augmenting path before
shrinking a blossom if and only if there is an
augmenting path after.

Proof (easy half): If there is an augmenting path
after shrinking, there is certainly one before: after shrinking, there is certainly one before:
expand each shrunken blossom on
augmenting path and connect two ends. One
is the blossom base; to connect, walk around
the blossom from the other end, starting with
a matched edge in the blossom.

Proof (hard half): A matching has an

augmenting path iff it is not of maximum size.

Suppose there is an augmenting path in the

graph before the blossom-shrinling. Then

there is still an augmenting path if the edges

along the stem of the blossom are switched along the stem of the blossom are switched

from matched to matched and vice-versa (no

change in matching size). Now the blossom

has no stem. If the aumenting path misses

the blossom, it is an augmenting path after

the blossom is shrunk.

A B

E

D

C

A B

E

D

C

Proof (hard half cont.): If the augmenting path

hits the blossom, then the part from the free

vertex not the base of the blossom to the

blossom is an augmenting path in the

shrunken graph: in the shrunken graph, the

blossom is a free vertex. Thus the shrunken

graph with edges switched along the stem has graph with edges switched along the stem has

an augmenting path. Switching the edges

along the stem back to their original state

does not change the size of the matching in

the shrunken graph. Thus the original

matching in the shrunken graph has an

augmenting path.

Lemma: If a search from a set of free vertices finds
no augmenting path, then no visited vertex will
be on an augmenting path in the future.

Proof: After blossom-shrinking, the subgraph S
induced by the set of visited vertices is bipartite,
only odd visited vertices are adjacent to unvisited
ones, via unmatched edges, and all the free ones, via unmatched edges, and all the free
visited vertices are even. If some future
augmenting path contained a visited vertex, it
would have to enter via an unmatched edge to a
visited odd vertex and leave via an unmatched
edge from a visited odd vertex. But then S could
not be bipartite.

Implementation

Disjoint set data structure to keep track of
blossoms.

Time per search = O(mα(m, m/n)
Total time = O(nmα(m, m/n)
Simplest implementation is DFS, one start vertex at

a time.a time.

For each vertex, keep track of the blossom
containing it, its parity, and whether it is in a
blossom (even).

Search proceeds from even vertices via unmatched
edges and from odd vertices via matched edges.

Even-to-even edge gives a blossom (on current
path)

