
P, NP, and NP-Completeness

Siddhartha Sen

Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2nd ed., by CLRS

Tractability

Polynomial time (p-time) = O(nk), where n is the
input size and k is a constant

Problems solvable in p-time are considered
tractable

NP-complete problems have no known p-time
solution, considered intractable

Tractability

Difference between tractability and intractability
can be slight

Can find shortest path in graph in O(m + nlgn) time,
but finding longest simple path is NP-complete

Can find satisfiable assignment for 2-CNF formula in
O(n) time, but for 3-CNF is NP-complete:

(x1  x2)  (x1  x3)  (x2  x3)

Outline

• Complexity classes P, NP

– Formal-language framework

• NP-completeness

– Hardest problems in NP

• Reductions: A  B

– NP-completeness reductions

Formal-language framework

Alphabet  = finite set of symbols

Language L over  is any subset of strings in *

We’ll focus on  = {0, 1}

L = {10, 11, 101, 111, 1011, …} is language of primes

Decision problems

A decision problem has a yes/no answer

Different, but related to optimization problem,
where trying to maximize/minimize a value

Any decision problem Q can be viewed as
language: L = {x  {0,1}* : Q(x) = 1}

Q decides L: every string in L accepted by Q,
every string not in L rejected

Example of a decision problem

PATH = {G, u, v, k : G = (V, E) is an undirected
graph, u,v ∈ V, k ≥ 0 is an integer, and  a path
from u to v in G with  k edges}

Encoding of input G, u, v, k is important! We
express running times as function of input size

Corresponding optimization problem is
SHORTEST-PATH

Complexity class P

P = {L {0, 1}* :  an algorithm A that
decides L in p-time}

PATH  P

Polynomial-time verification

Algorithm A verifies language L if
L = {x  {0, 1}* :  y  {0, 1}* s.t. A(x, y) = 1}

Can verify PATH given input G, u, v, k and path
from u to v

PATH  P, so verifying and deciding take p-time

For some languages, however, verifying much easier
than deciding
SUBSET-SUM: Given finite set S of integers, is there a
subset whose sum is exactly t?

Complexity class NP

Let A be a p-time algorithm and k a constant:

NP = {L  {0, 1}* :  a certificate y, |y| = O(|x|k),
and an algorithm A s.t. A(x, y) = 1}

SUBSET-SUM  NP

P vs. NP

Not much is known, unfortunately

Can think of NP as the ability to appreciate a
solution, P as the ability to produce one

P  NP

Don’t even know if NP closed under
complement, i.e. NP = co-NP?
Does L  NP imply Ḹ  NP?

P vs. NP

Comparing hardness

NP-complete problems are the “hardest” in NP:
if any NP-complete problem is p-time solvable,
then all problems in NP are p-time solvable

How to formally compare easiness/hardness of
problems?

Reductions

Reduce language L1 to L2 via function f:

1. Convert input x of L1 to instance f(x) of L2

2. Apply decision algorithm for L2 to f(x)

Running time = time to compute f + time to
apply decision algorithm for L2

Write as L1  L2

Reductions show easiness/hardness

To show L1 is easy, reduce it to something we know
is easy (e.g., matrix mult., network flow, etc.)

L1  easy

Use algorithm for easy language to decide L1

To show L1 is hard, reduce something we know is
hard to it (e.g., NP-complete problem):

hard  L1

If L1 was easy, hard would be easy too

Polynomial-time reducibility

L1 is p-time reducible to L2, or L1 p L2, if  a p-
time computable function f : {0, 1}*  {0, 1}*
s.t. for all x  {0, 1}*, x  L1 iff f(x)  L2

Lemma. If L1 p L2 and L2  P, then L1  P

Complexity class NPC

A language L  {0, 1}* is NP-complete if:

1. L  NP, and

2. L’ p L for every L’  NP, i.e. L is NP-hard

Lemma. If L is language s.t. L’ p L where L’ 
NPC, then L is NP-hard. If L  NP, then L  NPC.

Theorem. If any NPC problem is p-time solvable,
then P = NP.

P, NP, and NPC

NPC reductions

Lemma. If L is language s.t. L’ p L where L’  NPC,
then L is NP-hard. If L  NP, then L  NPC.

This gives us a recipe for proving any L  NPC:
1. Prove L  NP

2. Select L’  NPC

3. Describe algorithm to compute f mapping every input
x of L’ to input f(x) of L

4. Prove f satisfies x  L’ iff f(x)  L, for all x  {0, 1}*

5. Prove computing f takes p-time

Bootstrapping

Need one language in NPC to get started

SAT = { :  is a satisfiable boolean formula}

Can the variables of  be assigned values in {0, 1} s.t.
 evaluates to 1?

Cook-Levin theorem

Theorem. SAT  NPC.

Proof. SAT  NP since certificate is satisfying
assignment of variables. To show SAT is NP-hard,
must show every L  NP is p-time reducible to it.

Idea: Use p-time verifier A(x,y) of L to construct
input  of SAT s.t. verifier says “yes” iff  satisfiable

Verifier: Turing Machine

Church-Turing thesis: Everything computable is
computable by a Turing machine

/ / / / / / b \ \ \ \ \ \     

   -3 -2 -1 0 1 2 3   

Finite Control

certificate inputblank blank

read/write head

unbounded tape

In one step, can write a symbol, move head one
position, change state

What to do is based on state and symbol read

Fixed # of states: start state, “yes” state, (“no”
state); fixed # of tape symbols, including blank

Explicit worst-case p-time bound p(n)

Proof plan

Given L  NP we have Turing machine that
implements verifier A(x,y)

Input x, |x| = n, is “yes” instance iff for some
certificate y, machine reaches “yes” state within
p(n) steps from start state
Loops in “yes” state if gets there earlier

Construct  = f(x) that is satisfiable iff this happens
x is fixed and used to construct f(x), but y is unspecified

Variables in 

States: 1,…, w // 1 = start, w = “yes”

Symbols: 1,…, z // 1 = blank, rest input
// symbols like ‘0’ and ‘1’

Tape cells: -p(n),..., 0,…, p(n)

Time: 0, 1,…, p(n)

Variables:

hit: true if head on tape cell i at time t,
p(n)  i  p(n), 0  t  p(n)

sjt: true if state j at time t,
1  j  w, 0  t  p(n)

cikt: true if tape cell i holds symbol k at time t,
p(n)  i  p(n), 1  k  z, 0  t  p(n)

What does  need to say?

At most one state, head position, and symbol
per cell at each time:

hit  hi’t, i  i’, all t

sjt  sj’t, j  j’, all t

cikt  cik’t, k  k’, all i, all t

Correct initial state, head position, and tape
contents:

h00  s10  c010  c1k10  c2k20  …  cnkn0  c(n+1)10 

…  cp(n)10

Input is k1,…, kn, followed by blanks to right

Correct final state:

swp(n)

Correct transitions: e.g., if machine in state j
reads k, it then writes k’, moves head right,
and changes to state j’:

sjt  hit  cikt  sj’(t+1)  h(i+1)(t+1)  cik’(t+1), all i, t

Unread tape cells are unaffected:

hit  ci’kt  ci’k(t+1), i  i’, all k, t

Wrapping up

Any proof that gives “yes” execution gives
satisfying assignment, and vice versa

Also  contains O(p(n)2) variables, O(p(n)2) clauses

 SAT  NPC

Now that we are bootstrapped, much easier to
prove other L  NPC

Recall recipe for NPC proofs

1. Prove L  NP

2. Select L’  NPC

3. Describe algorithm to compute f mapping
every input x of L’ to input f(x) of L

4. Prove f satisfies x  L’ iff f(x)  L, for all x 
{0, 1}*

5. Prove computing f takes p-time

3-CNF-SAT  NPC

3-CNF-SAT = { :  is a satisfiable 3-CNF
boolean formula}

 is 3-CNF if it is AND of clauses, each of which is
OR of three literals (variable or negation)

(x1  x1  x2)  (x3  x2  x4)  (x1  x3  x4)

Proof. Show SAT p 3-CNF-SAT

Given input of SAT, construct binary parse tree,
introduce variable yi for each internal node

E.g.,  = ((x1  x2)  ((x1  x3)  x4))  x2

Rewrite as AND of root and clauses describing
operation of each node:

Each clause has at most three literals

Write truth table for each clause, e.g. for
’1 = (y1  (y2  x2)):

Write DNF (OR of ANDs) for ’1:
’1 = (y1  y2  x2)  (y1  y2  x2)  …

Use DeMorgan’s laws to convert to CNF:
’’1 = (y1  y2  x2)  (y1  y2  x2)  …

If any clause has < three literals, augment with
dummy variables p, q

(l1  l2)  (l1  l2  p)  (l1  l2  p)

Resulting 3-CNF formula is satisfiable iff original
SAT formula is satisfiable

CLIQUE  NPC

CLIQUE = {G, k : graph G = (V, E) has clique of
size k}

Naïve algorithm runs in (k2  |V|Ck))

Proof. Show 3-CNF-SAT p CLIQUE

Given formula  = c1  c2  …  ck, construct input
of CLIQUE:
For each cr = (l1

r  l2
r  l3

r), place v1
r, v2

r, v3
r in V

Add edge between vi
r and vj

s if r  s and corresponding
literals are consistent

If  is satisfiable, at least one literal in each cr is 1 
set of k vertices that are completely connected

If G has clique of size k, contains exactly one vertex
per clause  satisfied by assigning 1 to
corresponding literals

VERTEX-COVER  NPC

VERTEX-COVER = {G, k : graph G = (V, E) has
vertex cover of size k}

Vertex cover is V’  V s.t. if (u, v)  E, then u 
V’ or v  V’ or both

Proof. Show CLIQUE p VERTEX-COVER

Given input G, k of CLIQUE, construct input of
VERTEX-COVER:
Ḡ, |V|  k, where Ḡ = (V, Ē)

If G has clique V’, |V’| = k, then V  V’ is vertex
cover of Ḡ:
(u, v)  Ē  either u or v not in V’, since (u, v)  E

 at least one of u or v in V – V’, so covered

If Ḡ has vertex cover V’  V, |V’| = |V|  k, then V –
V’ is clique of G of size k
(u, v)  Ē  u  V’ or v  V’ or both

if u  V’ and v  V’, then (u, v)  E

SUBSET-SUM  NPC

SUBSET-SUM = {S, t : S  N, t  N and  a
subset S’ ⊆ S s.t. t = sS’ s}

Integers encoded in binary! If t encoded in
unary, can solve SUBSET-SUM in p-time, i.e.
weakly NPC (vs. strongly NPC)

Proof. Show 3-CNF-SAT p SUBSET-SUM

Given formula , assume w.l.o.g. each variable
appears in at least one clause, and variable and
negation don’t appear in same clause

Construct input of SUBSET-SUM:
2 numbers per variable xi, 1  i  n, indicates if
variable or negation is in a clause

2 numbers per clause cj, 1  j  k, slack variables

Each digit labeled by variable/clause, total n + k digits

t is 1 for each variable digit, 4 for each clause digit

 = C1  C2  C3  C4, C1 = (x1  x2  x3), C2 =
(x1  x2  x3), C3 = (x1  x2  x3), and C4 =
(x1  x2  x3)

Max digit sum is 6, interpret numbers in base  7

Reduction takes p-time: set S has 2n + 2k values of n + k
digits each; each digit takes O(n + k) time to compute

If  has satisfying assignment
Sum of variable digits is 1, matching t

Each clause digit at least 1 since at least 1 literal satisfied

Fill rest with slack variables sj, sj’

If  S’  S that sums to t
Includes either vi or vi’ for each i = 1,…, n; if vi  S’, set xi = 1

Each clause cj has at least one vi or vi’ set to 1 since slacks
add up to only 3; by above clause is satisfied

Implications of P = NP

Ability to verify a solution  ability to produce one!

Can automate search of solutions, i.e. creativity!

Can use a p-time algorithm for SAT to find formal
proof of any theorem that has a concise proof,
because formal proofs can be verified in p-time

 P = NP could very well imply solutions to all the
other CMI million-dollar problems!

“If P = NP, then the world would be a profoundly different
place than we usually assume it to be. There would be no
special value in "creative leaps," no fundamental gap
between solving a problem and recognizing the solution once
it's found. Everyone who could appreciate a symphony would
be Mozart; everyone who could follow a step-by-step
argument would be Gauss...”

— Scott Aaronson, MIT

