P, NP, and NP-Completeness

Siddhartha Sen
Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2" ed., by CLRS

Tractability

Polynomial time (p-time) = O(n¥), where n is the
input size and k is a constant

Problems solvable in p-time are considered
tractable

NP-complete problems have no known p-time
solution, considered intractable

Tractability

Difference between tractability and intractability
can be slight

Can find shortest path in graph in O(m + nlgn) time,
but finding longest simple path is NP-complete

Can find satisfiable assignment for 2-CNF formula in
O(n) time, but for 3-CNF is NP-complete:

(X, VvV =X) A (=X V X3) A (=X, Vv —xG)

Outline

 Complexity classes P, NP

— Formal-language framework

* NP-completeness

— Hardest problems in NP

 Reductions: A<B
— NP-completeness reductions

Formal-language framework

Alphabet X = finite set of symbols
Language L over X is any subset of strings in 2*

We’ll focus on 2~ ={0, 1}
L ={10, 11, 101, 111, 1011, ...} is language of primes

Decision problems

A decision problem has a yes/no answer

Different, but related to optimization problem,
where trying to maximize/minimize a value

Any decision problem Q can be viewed as
language: L = {x € {0,1}* : Q(x) = 1}

Q decides L: every string in L accepted by Q,
every string not in L rejected

Example of a decision problem

PATH = {{G, u, v, k) : G = (V, E) is an undirected
graph, u,v € V, k 20 is an integer, and 3 a path
from u to vin G with < k edges}

Encoding of input (G, u, v, k) is important! We
express running times as function of input size

Corresponding optimization problem is
SHORTEST-PATH

Complexity class P

P={Lc {0, 1}* : 4 an algorithm A that
decides L in p-time}

PATH € P

Polynomial-time verification

Algorithm A verifies language L if
L={xe{0,1}*:dy {0, 1}* s.t. A(x, y) = 1}

Can verify PATH given input (G, u, v, k) and path
fromutov
PATH € P, so verifying and deciding take p-time

For some languages, however, verifying much easier
than deciding

SUBSET-SUM: Given finite set S of integers, is there a
subset whose sum is exactly t?

Complexity class NP

Let A be a p-time algorithm and k a constant:

NP ={L € {0, 1}* : 3 a certificate y, |y| = O(|x]%),
and an algorithm A s.t. A(x, y) = 1}

SUBSET-SUM € NP

P vs. NP

Not much is known, unfortunately

Can think of NP as the ability to appreciate a
solution, P as the ability to produce one

P = NP

Don’t even know if NP closed under
complement, i.e. NP = co-NP?

Does L € NP imply L € NP?

P vs. NP

(a) (b)

(c) (d)

Comparing hardness

NP-complete problems are the “hardest” in NP:
if any NP-complete problem is p-time solvable,
then all problems in NP are p-time solvable

How to formally compare easiness/hardness of
problems?

Reductions

Reduce language L, to L, via function f:
1. Convert input x of L, to instance f(x) of L,
2. Apply decision algorithm for L, to f(x)

Running time = time to compute f + time to
apply decision algorithm for L,

Write as L, < L,

Reductions show easiness/hardness

To show L, is easy, reduce it to something we know
is easy (e.g., matrix mult., network flow, etc.)

L, < easy

Use algorithm for easy language to decide L,

To show L, is hard, reduce something we know is
hard to it (e.g., NP-complete problem):

hard <L,
If L, was easy, hard would be easy too

Polynomial-time reducibility

L, is p-time reducible to L,, or L, < L,, if 3 a p-
time computable function f: {0, 1}* — {0, 1}*
s.t. forall x € {0, 1}*, x € L, iff f(x) € L,

X f(x)

> F | —

A2

yes, f(x) € L»

yes, X € L
: >

Aj

no, f(x) &€ L,

Lemma. If L; <)

>
no, x € L,

[,and L, € P,thenl, € P

Complexity class NPC

A language L — {0, 1}* is NP-complete if:
1. L € NP, and
2. I'< Lforeveryl” e NP, i.e.Lis NP-hard

Lemma. If Lis language s.t. L' < L where L’ €
NPC, then L is NP-hard. If L € NP, then L € NPC.

Theorem. If any NPC problem is p-time solvable,
then P = NP.

P. NP, and NPC

NPC reductions

Lemma. If L is language s.t. L' < L where L’ € NPC,
then L is NP-hard. If L € NP, then L € NPC.

This gives us a recipe for proving any L € NPC:
1. Prove L € NP

2. Select L’ € NPC

3. Describe algorithm to compute f mapping every input
x of L’ to input f(x) of L

4. Prove fsatisfiesx € L’ iff f(x) € L, for all x € {0, 1}*
5. Prove computing f takes p-time

Bootstrapping

Need one language in NPC to get started

SAT = {(@) : @is a satisfiable boolean formula}

Can the variables of ¢ be assigned values in {0, 1} s.t.
¢ evaluates to 1?

Cook-Levin theorem

Theorem. SAT € NPC.

Proof. SAT € NP since certificate is satisfying
assignment of variables. To show SAT is NP-hard,
must show every L € NP is p-time reducible to it.

ldea: Use p-time verifier A(x,y) of L to construct
input ¢ of SAT s.t. verifier says “yes” iff ¢ satisfiable

Verifier: Turing Machine

Finite Control read/write head

blank certificate ,,,—’—’///// input blank
\<!!7

AVAVEVEVENEE-EAN RN RY RN RN

unbounded tape

Church-Turing thesis: Everything computable is
computable by a Turing machine

Finite Control read/write head

blank certificate input blank
A A

A7 BN PN NN N
. 32-101 2 3 .-

unbounded tape

In one step, can write a symbol, move head one
position, change state

What to do is based on state and symbol read

Fixed # of states: start state, “yes” state, (“no”
state); fixed # of tape symbols, including blank

Explicit worst-case p-time bound p(n)

Proof plan

Given L € NP we have Turing machine that
implements verifier A(x,y)

Input x, | x| = n, is “yes” instance iff for some
certificate y, machine reaches “yes” state within
p(n) steps from start state

Loops in “yes” state if gets there earlier

Construct ¢ = f(x) that is satisfiable iff this happens
x is fixed and used to construct f(x), but y is unspecified

Variables in ¢

States: 1,...,w //1=start, w=“yes”

Symbols: 1,..., 2z // 1 = blank, rest input
// symbols like ‘0’ and ‘1’

Tape cells: -p(n),..., 0,..., p(n)

Time: 0,1,.. p(n)

Variables:

h,: true if head on tape cell j at time ¢,
—p(n) <i<p(n), 0 <t < p(n)

sy true if state j at time ¢,
1<j<w,0t<p(n)

C;: true if tape cell i holds symbol k at time ¢,
—p(n)<i<p(n),1<k<z, 0<t<p(n)

What does ¢ need to say?

At most one state, head position, and symbol
per cell at each time:

—h,v =h,, i#i, allt
-
=SV =Sy, J#ES,allt

—Cy vV —Cipory k£ K, alli, all t

Correct initial state, head position, and tape
contents:

Noo A S10 A Co10 A Criy0 A Copyo A+ A Crie 0 A Cinenyzo A
e N\ Cp(n)lO

Input is k..., k., followed by blanks to right

Correct final state:

Swp(n)

Correct transitions: e.g., if machine in state j
reads k, it then writes k', moves head right,
and changes to state’:

Sit A Nig A Cie = Spiea1) A Piisayesn) A Cikgeeny Al T

Unread tape cells are unaffected:

oy
hiy A Cine = Crpqeeryy 171, allK, E

Wrapping up

Any proof that gives “yes” execution gives
satisfying assignment, and vice versa

Also ¢ contains O(p(n)?) variables, O(p(n)?) clauses
—> SAT € NPC

Now that we are bootstrapped, much easier to
prove other L € NPC

Recall recipe for NPC proofs

1. Prove L € NP
2. Select L’ € NPC

3. Describe algorithm to compute f mapping
every input x of L’ to input f(x) of L

4. Prove f satisfiesx € L' iff f(x) € L, forall x
{0, 1}*

5. Prove computing f takes p-time

3-CNF-SAT € NPC

3-CNF-SAT = {{¢) : ¢is a satisfiable 3-CNF
boolean formula}

¢ is 3-CNF if it is AND of clauses, each of which is
OR of three literals (variable or negation)

(X, V=X,V =X5) A (X3 VX, VX)) A (=X VX5 vV —Xy)

Proof. Show SAT < 3-CNF-SAT

Given input of SAT, construct binary parse tree,
introduce variable y; for each internal node

E.g., 9= ((x; = x;) A =((—x; © x3) v X)) v —x,

Rewrite as AND of root and clauses describing

operation of each node:
@' = ¥ (V1 — (y2 A =x2))

(V2 — (¥3 Vv ya))

(¥3 — (X1 — x2))

(Y4 — —y5)

(V5

(Ve

— (V6 Vv X4))
— (=x1 — Xx3))

- > - A

Each clause has at most three literals

Write truth table for each clause, e.g. for
¢,1 = (y1 <~ (yz N\ _'Xz)):

Yi Y2 X2 (y1 < (Y2 A —X2))

O =2 O =2 O =2 O =

Write DNF (OR of ANDs) for —¢';:
— @ =Y AV, AX) VY ATY, AX) V.
Use DeMorgan’s laws to convert to CNF:

Yo=YV Ay, V) A=Y VY, VX)) A

If any clause has < three literals, augment with
dummy variables p, g

(Lvh)ys(l,vLvp)all,vi,v—=p)

Resulting 3-CNF formula is satisfiable iff original
SAT formula is satisfiable

CLIQUE € NPC

CLIQUE ={{G, k) : graph G = (V, E) has clique of
size k}
Naive algorithm runs in Q(k* x |, C,))

Proof. Show 3-CNF-SAT < CLIQUE

Given formula ¢ =c, A ¢, A ... A ¢, CcONnstruct input
of CLIQUE:

Foreachc,= (/" Vv I, v 1)), place v/, v,,, vi"in V

Add edge between v/ and v if r # s and corresponding
literals are consistent

If @ is satisfiable, at least one literal in eachc,is1 =
set of k vertices that are completely connected

If G has clique of size k, contains exactly one vertex
per clause = ¢ satisfied by assigning 1 to
corresponding literals

VERTEX-COVER € NPC

VERTEX-COVER = {{G, k) : graph G = (V, E) has
vertex cover of size k}

Vertex coveris V' c Vs.t.if (u, v) € E, thenu €
V' orv € V' or both

Proof. Show CLIQUE <, VERTEX-COVER

Given input (G, k) of CLIQUE, construct input of
VERTEX-COVER:

(G, |V| — k), where G = (V, E)

If G has clique V/, |V'| =k, then V— V' is vertex
cover of G:

(u,v) € E= eitheruorvnotinV,since (u,v) ¢ E
—> at leastoneof uorvin V-V, so covered

If G has vertex cover V' c V, |V'| = | V| — k, then V —
V' is cliqgue of G of size k

(u,v) e E=>u eV orveV orboth

ifug Vandv g V, then(u,v) ¢ E

SUBSET-SUM e NPC

SUBSET-SUM ={(§5,t):ScN,te Nand da
subset S € Ss.t.t=%__o s}

Integers encoded in binary! If t encoded in
unary, can solve SUBSET-SUM in p-time, i.e.
weakly NPC (vs. strongly NPC)

Proof. Show 3-CNF-SAT < SUBSET-SUM

Given formula ¢, assume w.l.0.g. each variable
appears in at least one clause, and variable and
negation don’t appear in same clause

Construct input of SUBSET-SUM:

2 numbers per variable x;, 1 <j < n, indicates if
variable or negation is in a clause

2 numbers per clause c,1<j< k, slack variables
Each digit labeled by variable/clause, total n + k digits

tis 1 for each variable digit, 4 for each clause digit

(X, V X, Vv X3)

X X2 X3 CI C: C]. C4

w = 1 0 0 1 0 0 1
v, = 1 0 0 0 1 1 0
v»w = 0 1 0 0 0 0 1
v, = 0 1 0 1 1 1 0
vy = 0 0 1 0 0 1 1
v, = 0 0 1 1 1 0 0
s = 0 0 0 1 0 0 0
i’ = 0 0 0 2 0 0 0
s = 0 0 0 0 1 0 0
s$s = 0 0 0 0 2 0 0
ss = 0 0 0 0 0 1 0
s$s = 0 0 0 0 0 2 0
ss = 0 0 0 0 0 0 1
s = 0 0 0 0 0 0 2
t = 1 1 1 4 4 4 4

Max digit sum is 6, interpret numbers in base > 7

Reduction takes p-time: set S has 2n + 2k values of n + k
digits each; each digit takes O(n + k) time to compute

If ¢ has satisfying assignment
Sum of variable digits is 1, matching t

Each clause digit at least 1 since at least 1 literal satisfied

Fill rest with slack variables S sj’

If 35 < Sthatsumstot
Includes either v, or v/ foreachi=1,.., n;ifv,e §, setx,=1

Each clause c; has at least one v; or v;’ set to 1 since slacks
add up to only 3; by above clause is satisfied

Implications of P = NP

Ability to verify a solution = ability to produce one!

Can automate search of solutions, i.e. creativity!

Can use a p-time algorithm for SAT to find formal
proof of any theorem that has a concise proof,
because formal proofs can be verified in p-time

—> P = NP could very well imply solutions to all the
other CMI million-dollar problems!

“If P = NP, then the world would be a profoundly different
place than we usually assume it to be. There would be no
special value in "creative leaps," no fundamental gap
between solving a problem and recognizing the solution once
it's found. Everyone who could appreciate a symphony would
be Mozart; everyone who could follow a step-by-step
argument would be Gauss...”

— Scott Aaronson, MIT

