
COS 423 Lecture 21

Maximum FlowsMaximum Flows

© Robert E. Tarjan 2011

Maximum Flow Problem

In a directed graph with source vertex s, sink

vertex t, and non-negative arc capaicities, find vertex t, and non-negative arc capaicities, find

a maximum flow from s to t.

Let G = (V, E) be a directed graph with source

vertex s, sink vertex t, arc capacities c(v, w) ≥ 0

Assume G is symmetric: (v, w) ∈ E iff (w, v) ∈ E

(Symmetrize by adding reverse arcs with

capacity 0 as necessary)capacity 0 as necessary)

pseudoflow f: antisymmetric function on arcs

that is bounded by arc capacities:

f(v, w) = –f(w, v) ≤ c(v, w)

(antisymmetry simplifies some formulas)

excess e(v) of vertex v = Σ{f(u, v)|(u, v) ∈ E}

f is a preflow iff e(v) ≥ 0 for v ≠ s

f is a flow if e(v) = 0 for v ∉ {s, t}

value of f = e(t) (= –e(s) if f is a flow)

f is maximum if e(t) is maximum

Goal: find a maximum flow

A capacitated graph with a flow

(0-capacity symmetric arcs omitted)

a
100 100

50 50

s

b

t

100 100

1

50

50 50

50

0

Maximum flow

a
100 100

100 100

s

b

t

100 100

1

100

100 100

100

0

Bipartite matching via maximum flow

Find a matching of maximum size

a b c

fed

Direct edges from X to Y, add source s sink t, arcs

from s to all v in S, arcs from all w in Y to t, all

capacities 1

a b c

s

Needs an integer solution

fed

t

Augmenting path method

(Ford & Fulkerson)

(v, w) is saturated if f(v, w) = c(v, w), otherwise
residual

residual capacity of (v, w):

r(v, w) = c(v, w) – f(v, w)r(v, w) = c(v, w) – f(v, w)

augmenting path: path of residual arcs from s to
t

residual capacity of an augmenting path:
minimum residual capacity of arcs on path

f ← 0;

while ∃augmenting path P do

{Δ ← residual capacity of P;

for (v, w) on P do

{f(v, w) ← f(v, w) + Δ; f(w, v) ← f(w, v) – Δ}}

Augmenting path s, a, t

s

a

t

100 100

1

0 0

0s

b

t

100 100

1

0 0

0

Augmenting path s, b, t

s

a

t

100 100

1

100 100

0s

b

t

100 100

1

0 0

0

No augmenting path: flow is maximum

s

a

t

100 100

1

100 100

0s

b

t

100 100

1

100 100

0

Correctness via duality

cut: a Partition of the vertices into two parts, X

containing s and Y containing t

capacity of cut:

c(X, Y) = Σ{c(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}c(X, Y) = Σ{c(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}

net flow across cut:

f(X, Y) = Σ{f(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}

≤ c(X, Y)

minimum cut: a cut of minimum capacity

Lemma: If X, Y is any cut and f is any flow, f(X, Y)

= e(t).

Proof: Exercise

Corollary: The maximum flow value is at most

the minimum cut capacity

Max Flow, Min Cut Theorem: The maximum flow

value equals the minimum cut capacity

Proof: Run the augmenting path algorithm until

there is no augmenting path. Let X be the set

of vertices reachable from s by a path of of vertices reachable from s by a path of

residual arcs, Y the rest. Then y ∈ Y, so X, Y is a

cut. Also, if (x, y) ∈ E with x ∈ X & y ∈ Y, then

c(x, y) = f(x, y), so c(X, Y) = f(X, Y).

Termination?

Proof of max-flow, min-cut theorem requires

that the augmenting path algorithm

terminates.

Ford & Fulkerson: If arc capacities are integers,

each augmentation increases the flow value each augmentation increases the flow value

by at least 1, so algorithm must terminate:

sum of arc capacities is an upper bound on

#augmentations. This argument extends to

fractional capacities. Also, if arc capacities are

integers, there is an integral maximum flow.

What if capacities are irrational?

How many augmentations?How many augmentations?

Augmenting path s, a, b, t

s

a

t

100 100

1

0 0

0s

b

t

100 100

1

0 0

0

Augmenting path s, b, a, t

s

a

t

100 100

1

1 0

1s

b

t

100 100

1

0 1

1

Augmenting path s, b, a, t

s

a

t

100 100

1

1 1

0

Maximum flow after 198 more augmentations

s

b

t

100 100

1

1 1

0

#augmentations not polynomial in graph size

and #bits needed to represent capacities

If capacities are irrational, algorithm need not

terminate, flow value need not converge to terminate, flow value need not converge to

maximum (even though it will converge).

Efficiency requires a good choice of augmenting

paths

Edmonds &Karp: Choose augmenting path with

fewest arcs: O(nm) augmentations, O(nm2)

time.

Dinic: In each phase, find all augmenting paths

with k arcs but no fewer: reduces amortized

time per augmentation from O(m) to O(n),

total time to O(n2m) (just like Hopcroft-Karp

bipartite matching algorithm)

Faster, simpler algorithms

Break computation into smaller parts: change

flow on one arc at a time, move flow along

estimated shortest path to sink

Allow (temporary) excess flow at a vertex:

preflow (e(v) ≥ 0 for v ≠ s)

Vertex v ∉ {s, t} is active if e(v) > 0

valid vertex labeling d

d(v) is a non-negative integer,

d(t) = 0, d(s) = n,

d(v) ≤ d(w) + 1 if (v, w) is residuald(v) ≤ d(w) + 1 if (v, w) is residual

→ d(v) is at most the number of arcs on a

residual path from v to t, if there is such a

path

Preflow push algorithm

d ← 0; d(s) ← n; f ← 0;

for (s, v) ∈ E do f(s, v) ← c(s, v);

while ∃ active v do

if ∃ residual (v, w) ∋ d(v) > d(w) thenif ∃ residual (v, w) ∋ d(v) > d(w) then

f(v, w) ← f(v, w) + min{e(v), r(v, w)}

[push: saturating if it saturates (v, w), non-

saturating otherwise]

else d(v) ← 1 + min{d(w)|(v, w) residual} [label]

After initialization: flows, labels

s

a

t

100 100

1

100 0

0

0

04 s

b

t

100 100

1

100 0

0 0

0

4

Process a: label, push to b

s

a

t

100 100

1

100 0

1

1

04 s

b

t

100 100

1

100 0

1 0

0

4

Process b: label, push to t

s

a

t

100 100

1

100 0

1

1

04 s

b

t

100 100

1

100 100

1 0

1

4

Process b: label, push to a

s

a

t

100 100

1

100 0

0

1

04 s

b

t

100 100

1

100 100

0 0

2

4

Process a: push to t, no active vertices

s

a

t

100 100

1

100 100

0

1

04 s

b

t

100 100

1

100 100

0 0

2

4

Basic properties of algorithm

After initialization, labeling is valid; while loop
maintains validity

f is always a preflow.

e(t) at any later time ≤ Σ{e(v)|d(v) < n}Σ

If e(v) > 0, there is a simple path of positive flow
from s to v (proof: exercise)

If e(v) > 0, d(v) < 2n – 1: there is a residual path
from v to s along which d can decrease by at
most 1 per arc

At most 2n – 1 labelings per vertex. Time to

label a vertex is O(degree). Time for all

labelings is O(nm).

Implementation of pushes: For each vertex v,

maintain a current arc (v, w). To process v in

while loop, do a push on current arc if while loop, do a push on current arc if

allowed; if not, replace current arc by next arc

on arc list; if current arc is last on list, label v

At most one saturating push per incident arc

between labelings of v → O(nm) saturating

pushes, O(1) time per push + O(nm) overhead

How many non-saturating pushes?

How to choose vertices for processing?

Variants

Label-tightening: Periodically, set all labels equal

to their maximum possible values (via BFS

backward from t followed by BFS backward

from s). Takes O(m) time

Lazy return of excess: do no steps at vertices of

label ≥n. Once done, return excess flow to s by

finding paths of positive flow from s to vertices

of label ≥n and reducing the flow on such paths.

Simple implementation takes O(nm) time

Running time by choice of vertices

Any order: O(n2m) time

Queue of active vertices(FIFO): O(n3) time

Highest label: O(n2m½) timeHighest label: O(n2m½) time

Large excess: O(n2lgU + nm) time, if capacities

are integers ≤U

Analysis: charge non-saturating pushes against

other steps via a potential functionother steps via a potential function

Generic method

Φ = Σ{d(v)|v active}

0 ≤ Φ ≤ 2n2

A non-saturating push decreases Φ by at least

one → amortized cost ≤ 0one → amortized cost ≤ 0

Amortized cost of a label of v = Δd(v)

Amortized cost of a saturating push ≤ 2n

→ #non-saturating pushes = O(n2m)

FIFO method

Define passes:

pass 0 = processing of initially active vertices

pass k + 1 = processing of vertices added to

queue during pass k

Φ = max{nd(v)|v active}

0 ≤ Φ ≤ 2n2

A pass does at most n non-saturating pushes, at

most one per vertex, has actual cost at most n

A pass that increases labels by a total of k

increases Φ by at most (k – 1)n → amortized

cost ≤ kn → total amortized cost ≤ 2n3cost ≤ kn → total amortized cost ≤ 2n

→ O(n3) running time

Large-excess method

Assume capacities are integral, at most U

Δ is a scale factor, initially the smallest power of

two no less than U

An excess is big if it is at least Δ/2

Process a vertex with big excess; break a tie in

favor of smallest label. Never allow an excess

to exceed Δ. When all active vertices have

small excess, divide Δ by 2

To maintain bound on excesses during a push:

increase f(v, w) by min{e(v), r(v, w), Δ – e(w)}

If e(v) is big, e(w) is not big, and the push is non-

saturating, then it increases e(w) by at least saturating, then it increases e(w) by at least

Δ/2

Overhead to implement big-excess rule is O(nm)

A phase is the time between changes in Δ.

During the last phase, Δ = 1 → #phases ≤ lgU

Φ = Σ{2e(v)d(v)/Δ|v active}

0 ≤ Φ ≤ 4n2

Each non-saturating push decreases Φ by at

least 1 → amortized cost of a non-saturating

push is at most 0

Label increase of k increases Φ by at most 2k,

≤4n2 over all relabelings

Decrease in Δ doubles Φ, increasing Φ by at

most 2n2 per change in Δ, at most 2n2lgU over

all phases

→ O(n2lgU + nm) running time

