5.3 Substring Search Substring search

Goal. Find pattern of length M in a text of length N.

typically N >> M

onm!er" mber
Sul:strlng pattern—N E E D L E
time
text ext—I1 N A H A Y S T A CKNTETETDTLTETINA
pme(;‘d match
DDDDDDDD rightvalue
tt 9 aext » brute force
® .
pa ern » Knuth-Morris-Pratt
characten.m g » Boyer-Moore Computer forensics. Search memory or disk for signatures,
—~h1atch » Rabin-Karp e.g., all URLs or RSA keys that the user has entered.
3 HPOSHHION e
hashgstabnae force
http://citp.princeton.edu/memory
Algorithms, 4™ Edition . Robert Sedgewick and Kevin Wayne . Copyright © 2002-2010 - April 5,2011 9:29:31 PM
Applications Application: spam filtering

* Parsers. Identify patterns indicative of spam.

* Spam filters. * PROFITS

SpamAssassin

* Digital libraries. * LOSE WELGHT

* Screen scrapers. * herbal Viagra

* Word processors. @ * There is no catch.

* Web search engines. LeX|?Ne>f|s * LOW MORTGAGE RATES

» Electronic surveillance. — * This is a one-time mailing.

* Natural language processing. * This message is sent in compliance with
 Computational molecular biology.
* FBIs Digital Collection System 3000.

 Feature detection in digitized images.

spam regulations.

Application: electronic surveillance Application: screen scraping

Goal. Extract relevant data from web page.
Need to monitor all
internet traffic.

e, (seCUTIY) Ex. Find string delimited by and after first occurrence of
“ | \
No way! pattern Last Trade:.
(privacy)
—®™ b8
Google Inc. (GOOG) 1110 ET: 25644 § 599 (228%) e
Well, we’re mainly - <tr>
interested in Quotes G016 InC. (essaqts. G00C © et 21e10m v <td class= "yfnc_ tableheadl"
“ATTACK AT DAWN" 'i:wrysc v Ao ime, 29845 357 (1 615 z} : width= "48%">
Historical Prices Last Trade: 256.44 DaysRange: 250.26-269.95 269 .
_ T o e A Last Trade:
OK. Build a \ erecie e vssqame Volme a0y B E </td>
machine that just) Basio Tech. Analysis prev Close: 26243 ’:E:‘C:‘ ”:::7': ; __ouonte <td class= "yfnc_tabledatal">
looks for that. ews & Info Open: 260.65 p: * 1600000« vur i ° L ©
e B s631arm PEW 1540 | K Sttt <big>452.92</big>
ompanyEvens A . ePs 1856 O e serst g
</td></tr>
<td class= "yfnc tableheadl"
http:/ /finance.yahoo.com/q?s=goog width= "48%">
Trade Time:
“ATTACK AT DAWN" </td>
substring search <td class= "yfnc tabledatal">
machine
found
5 6

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, starting at a given of fset.

public class StockQuote
{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/g?s=";
String text = in.readAll();
int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("", start);
int to = text.indexOf ("", from);
String price = text.substring(from + 3, to);
StdOut.println(price) ;
}
}

% java StockQuote goog
564.35

% java StockQuote msft
26.04

Brute-force substring search

Check for pattern starting at each text position.

i j i+j 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C
0 2 2 A B R <~ pat
1 0 1 A entries in red are
2 1 3 A B / mismatches
entries in gray are
3 0 3 A for reference only
4 1 > entries in black A B /
5 0 5 match the text A
6 4 10 A B R A
AN return i when j isM 4
match

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

i § i+j 0 1 2 3 4 5 6 7 8
txt— A A A A A A A A A

0 4 4 A A A A B-—pat

1 4 5 A A A A B

2 4 6 A A A A B

3 4 7 A A A A B

4 4 8 A A A A B

5 5 10 A A A B

Worst case. ~M N char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

>| o
W | R
> | N
Nl w
> >
O O|lwv
> > o

public static int search(String pat, String txt)
{

int M = pat.length();

int N = txt.length();

for (int i = 0; i <= N - M; i++)

{

int j;
for (j = 0; j < M; j++)
if (txt.charAt(i+j) !'= pat.charAt(j))
break;
if (j == M) return i; <«— index in text where

pattern starts

}

return N; <«— notfound

Backup

In typical applications, we want to avoid backup in text stream.
* Treat input as stream of data.
* Abstract model: standard input. Ak AT oA

substring search
machine

found @

Brute-force algorithm needs backup for every mismatch.

matched chars

l mismatch
/
A AAAAA
A A A A AB
backup
A
A

/

shift pattern right one position

Approach 1. Maintain buffer of size M (build backup into standard input).
Approach 2. Stay tuned.

Brute-force substring search: alternate implementation Algorithmic challenges in substring search

Same sequence of char compares as previous implementation. Brute-force is often not good enough.
* i points fo end of sequence of already-matched chars in text.
* j stores number of already-matched chars (end of sequence in pattern). Theoretical challenge. Linear-time guarantee. <— fundamental algorithmic problem
i=6, j=3 0123456780910 Practical challenge. Avoid backup in text stream. <— often no room or time to save text
A BACADABTR RASC
A DA

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
public static int search(String pat, String txt) people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
‘ their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
N txt.length() ; of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
int j, M = pat.length(); time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now

int 1,

for (i =0, J=0; i <N & j < M; i++) is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
{ is the time for many good people to come to the aid of their party. Now is the time for all good people to
if (txt.charAt(i) == pat. charAt (J)) j++; come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
else { i -= §; 3 = 0; } - hedlop l:::cy. Now is the time for all of the good people to come to the aid of their party. Now is the time for
good people to come to the aid of their attack at dawn party. Now is the time for each person to come
} to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
. . . the time for all good Republicans to come to the aid of their party. Now is the time for all good people
if (j == M) return i - M; to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
else return N; party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
} Democrats to come to the aid of their party.

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern Baaaaaaaaa
* Suppose we match 5 chars in pattern, with mismatch on 6 char.
* We know previous 6 chars in text are BAAAAB.

L3 DOH'T need to bCle UP text poinTer‘! \ assuming { A, B } alphabet

text
\A B A A A

A
after mismatch
onsixthchar— B A A A A

» Knuth-Morris-Pratt brute-force backs___—~ B
up to try this B

5
BAAAAAAAAA
A

~— pattern

and!hix/ B
and this /B
and this B AAAAAAAAA

and this

but no bm‘kl,lp/

is needed

AAAAAAAAA

Knuth-Moris-Pratt algorithm. Clever method to always avoid backup. (!)

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

* Finite number of states (including start and halt).

* Exactly one transition for each char in alphabeft.

* Accept if sequence of transitions leads to halt state.

internal representation

J
pat.charAt(j)
A
B
C

If in state j reading char c:

if j is 6 halt and accept
dfafl1[j]

oo Rr>»o
O NP mE
o o wX>N
(=R 15
cou s
o~ RNV

else move to state dfa[c] [J]

graphical representation

Interpretation of Knuth-Morris-Pratt DFA

Q. What is interpretation of DFA state after reading in txt[i]?
A. State = number of characters in pattern that have been matched.
(length of longest prefix of pat[] that is a suffix of txt[o..1])

Ex. DFA is in state 3 after reading in character txt[e6].

0 1 2

0 3 45
B pt — A B A B A C

prefix of pat[]

1 2 3 45 6 7 8
C B AABATCA

suffix of text[0..6]

txt —>

Cic (&_/—\A Q@
A B —— A — B —> A — C—b@
/B'Cga C\Q} B'ggi/—

—
C
C

KMP substring search: frace

012 3 4 5 6 7 8 91011 12 13 14 15 16~ 1
read thischir—B C B A A B A C A A B A B A C A A~ txt.charAt(i)
inthisstate —~0 0 0 0 1 1 2 3 0 1 1 2 3 4 5 6 7]
go to this state A
found
A returni - M =9
A
A i 0 1 2 3 4 5
B pat.charAt(j) A B A B A C
B A1l 1 3 1 5 1
dfa[l[jl]e 0 2 0 4 0 4
A co0o 0 0 0 0 6
match: B
set j to dfaf[txt.charAt(i)1[j] A
= dfa[pat.charAt(§)]1[j]
= j+1 B
B
A
mismatch: B
set j to dfa[txt.charAt(i)][j] A
implies pattern shift to align
pat.charAt(j) with C
txt.charAt(i+1) A B A B A C
Trace of KMP substring search (DFA simulation) forA B A B A C
KMP search: Java implementation
Key differences from brute-force implementation.
* Text pointer i never decrements.
* Need to precompute aga[][] from pattern.
public int search(String txt)
{
int i, j, N = txt.length();
for (1 =0, jJ =0; i <N & j < M; i++)
j = dfa[txt.charAt(i)][j]; <«——+— no backup
if (j == M) return i - M;
else return N;

Running time.
* Simulate DFA on text: at most N character accesses.
* Build DFA: how to do efficiently? [warning: fricky algorithm ahead]

20

KMP search: Java implementation

Key differences from brute-force implementation.
* Text pointer i never decrements.

* Need to precompute aga[] (] from pattern.

* Could use input stream.

public int search(In in)

{
int i, j;
for (i =0, j =0; !in.isEmpty() && j < M; i++)
j = dfa[in.readChar()][3j];
if (j == M) return i - M;
else return NOT_FOUND;
}
G~
NS

Knuth-Morris-Pratt construction

Include one state for each character in pattern (plus accept state).

j 0 1 2 3 4 5
pat.charAt(3) A B A B A C
A
dfal[1[j1|B

© 0o 66 66 o 06 °

Constructing the DFA for KMP substring searchforA B A B A C

Building DFA from pattern: easy case

Match transition.
then go to state j+1. T

first j characters of pattern

o have already been matched
now first j+1 characters of

pattern have been matched

no backup i
pat.charAt(3)

If in state 5 and next char ¢ ==

pat.charAt (j),

f

next char matches

0 1 2 3 4
A B A B A C

v

Knuth-Morris-Pratt construction

Match transition. For each state j, dfa[pat.charaAt(j)1[j] = j+1.

f

first j characters of pattern
have already been matched

f

now first j+1 characters of
pattern have been matched

j 0 1 2 3 4 5
pat.charAt(3) A B A B A C
A1 3 5
dfa[]1[j]|B 2 4
C 6

@—A—»@—B—»@—A—»@—B—»@—A—»@C—» 6

Constructing the DFA for KMP substring searchforA B A B A C

22

24

Building DFA from pattern: tricky case

Mismatch transition.
Suppose DFA is in state j and next char is ¢ '= pat.charat(j)

. ABABAC... <«—math
ABABAA <«<—— mismatch case 1
ABABAB <«<— mismatch case 2

Brute-force solution: Back up j-1 chars and restart.

Key idea 1. The last j characters of input are known to be pat[1..j-11, so use
the DFA itself to find what state (X) it would be in if restarted after backup

Key idea 2. Maintain the value of X while constructing DFA.

/_\ pat[l..j-1] =B A B A
@ RS T

AAA» B—> A—
dfa['A'] [X]

dfa['A'] [5]
&// GfeliBE] = amtiEm =

new X = dfa['C'][X] = 0

Ex.

]
[

I
[S

Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char c !'= pat.charat(j),
dfa[c][j] = dfa[c] [X]; then update x = dfa[pat.charat(j)][X].

X = simulation of empty string
j 0 1 2 3 4 5 j=1
pat.charAt(j) A B A B A C pat[l..j-1] = "'
A Cé) 1 3 5 0
dfa[1[31|B 2 4 -
c o 0 6 dfa[A][l]-dfa[A][x]-l

(]
o

dfa['C'][1] = dfa['C'] [X]

new X = dfa['B'][X] = 0

Q\ D D (D

Constructing the DFA for KMP substring searchforA B A B A C

Knuth-Morris-Pratt construction

i 0 1 2 3 4 5
pat.charAt(j) A B A B A C
A1 3 5
dfa[J[j1|B 0 2 4
c 0 6

C@M@B—@A—»@e—»@ﬂ\—»@@e

Constructing the DFA for KMP substring searchforA B A B A C

26

Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char c '= pat.charat(j),
dfa[c][j] = dfa[c][x]; then update x = dfa[pat.charat(j)][X].

X = simulation of B
j 0 1 2 3 4 5 j =2
pat.charAt(j) A B A B A C pat[l 1 ="'B'
AD 1 3 5
dfa[][j1[B 0 2 0 4 X=0 .
co 0 0 6 dfa['B'][2] = dfa['B'][X] = 0
dfa['C'][2] = dfa['C'][X] = 0

new X = dfa['A'][X] =1

%A§éﬁs~@<j~@e—»@ﬂx—»®n~e
_/B'C

Constructing the DFA for KMP substring searchforA B A B A C

X

28

Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char c !'= pat.charat(j),
dfa[c][j] = dfa[c] [X]; then update x = dfa[pat.charat(j)][X].

X = simulation of BA
|

i 0 1 2 3 4 5 j=3

pat.charAt(j) A B A B C pat[l..j-1] = 'BA'
A1l 1 3 1 5
dfalljils 0 @ 0 4 S a
c 0o 0o 0 o 6 dfa[A][:&]:dfa[A][x]:l
dfa['C'][3] = dfa['C'][X] =0

new X = dfa['B'][X] = 2

]
ﬁ—»@—;\—»@-c—» 6

Constructing the DFA for KMP substring searchforA B A B A C

Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char c !'= pat.charat(j),
dfa[c][j] = dfa[c] [X]; then update x = dfa[pat.charat(j)][X].

1(= simulation of BABA
j 0 1 2 3 4 5 j=5
pat.charAt(jd> A B A B A C pat[l..j-1] = 'BABA'
A1l 1 3 1 5 1
dfaflf(jlJjB 0 2 0 4 0 4 x=? ' .
c 0 0 0 (:) 0 6 dfa['A'][5] = dfa['A'][X] : i

dfa['B'][5] = dfa['B'][X]
Fa 5] = 6

new X = dfa['C'][X] =0

Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char c '= pat.charat(j),

dfa[c] [j] =

dfa[c] [X]; then update x = dfa[pat.charat(j)][X].

X
}
j 0 1 2 3 4 5
pat.charAt(j) A B A B A C
A1l 1.3 1 5
dfafj[(jljs 0 2 0 4 O
c 0 0 0 0 0 6

= simulation of BAB

j=4
pat[l..j-1] = 'BAB'

X =2

df [4] =
dfa['B'][4] = dfa['B'][X]
dfa['C'][4] = dfa['C'][X]

new X = dfa['B'][X] = 3

Constructing the DFA for KMP substring search: Java implementation

For each state j:

* Copy dfa[1[x] to afa[]1[3j] for mismatch case.

» Set dfa[pat.charat(j)1[j] to j+1 for match case.

+ Update x.

public KMP(String pat)

{

this.pat = pat;

M = pat.length() ;

dfa = new int[R] [M];
dfa[pat.charAt(0)][0] = 1;

for (int X =0, j = 1; j < M; j++)

{
for (int ¢ = 0; ¢ < R; c++)
dfa[c] [j] = dfa[c] [X];
dfa[pat.charAt(j)1[j] = j+1;
X = dfa[pat.charAt(j)][X];

—
—
«—

— copy mismatch cases
—— set match case
— update restart state

Running time. M character accesses (but space proportional to R M).

30

32

KMP substring search analysis Knuth-Morris-Pratt: brief history

Proposition. KMP substring search accesses no more than M + N chars * Independently discovered by two theoreticians and a hacker.

to search for a pattern of length M in a text of length N. - Knuth: inspired by esoteric theorem, discovered linear-time algorithm
- Pratt: made running time independent of alphabet size

Pf. Each pattern char accessed once when constructing the DFA; - Morris: built a text editor for the CDC 6400 computer

each text char accessed once (in the worst case) when simulating the DFA. * Theory meets practice.

Proposition. KMP constructs dfa[](] in time and space proportional to R M. e Lo

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHt, JAMES H. MORRIS, JR.f AND VAUGHAN R. PRATT{

Larger alphabets. Improved version of KMP constructs nfa[] in time and space
Abstract. An algorithm is presented which finds all occurrences of one given string within
N another, in running time proportional to the sum of the lengths of the strings. The constant of
pl"OpOl"TlOﬂOl to M. proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general p ing problems. A ion of the
algorithm shows that the set of concatenations of even palindromes, i.c., the languxge (mx“)‘ can be

inlinear time. Oth run even faster on the

N
@wm@fﬁ@_ ,,

Don Knuth Jim Morris Vaughan Pratt

Knuth-Morris-Pratt application

A string s is a cyclic rotation of ¢ if s and # have the same length and
s is a suffix of ¢ followed by a prefix of .

yes yes no
ROTATEDSTRING ABABABBABBABA ROTATEDSTRING
STRINGROTATED BABBABBABAABA GNIRTSDETATOR

Problem. Given two strings s and ¢, design a linear-time algorithm that
determines if s is a cyclic rotation of +.

Solution.
* Check that s and 7 are the same length.
 Search for s int + ¢ using KMP.

Robert Boyer J. Strother Moore

Boyer-Moore: mismatched character heuristic
Intuition.

* Scan characters in pattern from right to left.
* Can skip M text chars when finding one not in the pattern.

i j 01 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23

text—F I N D I N A H A Y S TAUCKNEEDL E
0 5 E <— pattern
5 5

11 4 L E
15 0 N E E D L E

returni = 15

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[e] = rightmost occurrence of character c in pat.

basicidea i i

incrementi by j - right[’N’] 1
to line up text with N in pattern {

reset j to M-1 t
3

Mismatched character heuristic (mismatch in pattern)

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[e] = rightmost occurrence of character c in pat.

< 0 1 2 3 4 5
A -1
right = new int[R]; B -1
for (int ¢ = 0; ¢ < R; c++) C -1
right[c] = -1; D -1 3
for (int j = 0; j < M; j++) E -1 1 2 5
right[pat.charAt(j)] = j;
L -1 4
M -1
N -1 0

Boyer-Moore skip table computation

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[e] = rightmost occurrence of character c in pat.

[ary

[R Ry
-
m m

i
increment i by j+1 {

reset j to M-1 f
]

Mismatched character heuristic (mismatch not in pattern)

Character not in pattern? Set rightc] to -1.

38

40

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat.

G

GO Mo~ 1
—
m

lining up text with rightmost
would shift pattern left

. . i
so increment i by 1 '

reset j to M-1 ?
bl

Heuristic no help? Increment i and reset j to mM-1

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/ M character compares to search for a pattern of

length M in a text of length N. sublinear

Worst-case. Can be as bad as ~ M N.

Boyer-Moore: Java implementation

public int search(String txt)
{
int N = txt.length();
int M = pat.length();
int skip;
for (int i = 0; i <= N-M; i += skip)
{
skip = 0;
for (int j = M-1; j >= 0; j--)
{

if (pat.charAt(j) '= txt.charAt(i+j)) <«———— compute skip value

{
skip = Math.max(1l, j - right[txt.charAt(i+3j)]);
break;

}
if (skip == 0) return i;
}

return N;

i skip 0123 456
txt—B B B B B B B
0 o A B B B B~ pat
1 1 A B B B B
2 1 A B B B B
301 A B B B
4 1 A B B
501 A B

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a

KMP-like rule to guard against repetitive patterns.

» Rabin-Karp

“ull

Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85

<«<———— match

42

44

Rabin-Karp fingerprint search

Basic idea = modular hashing.

» Compute a hash of pattern characters 0 to M - 1.

* For each i, compute a hash of text charactersito M +i- 1.
o If pattern hash = text substring hash, check for a match.

pat.charAt(i)
i 012 3 4
2 6 5 3 5 %997 =

txt.char
5 6 7

613

At (i)
8 910 11 12 13 14 15

9 2 6
% 997 =
9 % 997
2 %
6

w
R oR R R
FEFNENNEFNIIN]
e]
[, BV, BNV, BV, BV, N R

© o o ©

~— returni = 6

NONONN

6
6
6

53 5 8 9 7 9 3
508

= 201

997 = 715

% 997 = 971

5 % 997 = 442

5 3 %997 =929

5 3 5 %997 =613

match

Efficiently computing the hash function

Challenge. How to efficiently compute xi.1 given that we know xi.

Xi=t;i RMV + 5 RM2 +

..+ a1 RO

Xi+1 =tirt RM U+ o RM2 + .+ ey RO

Key property. Can update hash functio

xitl = xR - t;RM +

o

shift subtract

n in constant timel

ti+M

!

add new

left leftmost digit rightmost digit

i ... 2 3 45 6 7
current value 4 1 5 9 2
new value 15 9 2 6 = et
4 1 5 9 2 currentvalue
- 4 0 0 0 O
1 S5 9 2 subtractleading digit
* 1 Q0 multiply by radix
159 20
+ 6 addnew trailing digit
1 5 9 2 6 newvalue

45

47

A W N R O

Efficiently computing the hash function

Modular hash function. Using the notation 7 for txt.charat(i),

we wish to compute

Xi=tiRM'+ i RM2+ +tima RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

pat.charAt(
1 2 3 4
6 5 3 5

% 997 = 2 Va /Q

% 997 = (2*10 + 6) % 997 = 26

5 % 997 = (26%10 + 5) % 997 = 265

5 3 % 997 = (265%10 + 3) % 997 = 659

5 3 5 %997 = (659%10 + 5) % 997 = 613

NNN NN N[O

6
6
6
6

Computing the hash value for the pattern with Horner’s method

// Compute hash for M-digit key
private long hash(String key, int M)
{
long h = 0;
for (int j = 0; j < M; j++)
h = (R * h + key.charAt(j)) % Q;
return h;

Rabin-Karp substring search example

2

8 9 10 11 12 13 14 15

(S

4 6
5 2

| w

5

4 9
997 = 3 Q
s

% 997 = (3*10 + 1) % 997 = 31

w W w w w wl o
e N = e T =
INIFSEF NS
=
v n

© v v v

2
2
2
2

~— return i-M+1 = 6

4 % 997 = (31*10 + 4) % 997 = 314

1 % 997 = (314%10 + 1) % 997 = 150

5 % 997 = (150%10 + 5) % 997 = 508 RV

9 % 997 = ((508 + 3*(997 - 30))¥10 + 9) % 997 = 201

2 % 997 = ((201 + 1%(997 - 30))*10 + 2) % 997 = 715

6 % 997 = ((715 + 4%(997 - 30))*10 + 6) % 997 = 971

6 5 % 997 = ((971 + 1%(997 - 30))*10 + 5) % 997 = 442

6 5 3 % 997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 l
6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613

7
6 53 5 8 9 7 9 3

match

46

48

Rabin-Karp: Java implementation

public class RabinKarp
{

private long patHash; // pattern hash value
private int M; // pattern length
private long Q; // modulus

private int R; // radix

private long RM; // R*(M-1) % Q

public RabinKarp(String pat) {
M = pat.length() ;

R = 256; : a large prime (but not so
Q = longRandomPrime () ; large to cause long overflow)
RM = 1; <«———+— precompute RM- 1 (mod Q)

for (int i = 1; i <= M-1; i++)
RM = (R * RM) % Q;
patHash = hash(pat, M);
}

private long hash(String key, int M)
{ /* as before */ }

public int search(String txt)
{ /* see next slide */ }

49

Rabin-Karp analysis

Theory. If Qis asufficiently large random prime (about M N?2),
then the probability of a false collision is about 1/N.

Practice. Choose O to be a large prime (but not so large as to cause overflow).
Under reasonable assumptions, probability of a collision is about 1/ Q.

Monte Carlo version.
* Always runs in linear time.

» Extremely likely to return correct answer (but not always!).

Las Vegas version.
* Always retfurns correct answer.
* Extremely likely o run in linear time (but worst case is M N).

Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

public int search(String txt)
{

check for hash collision

using rolling hash function
int N = txt.length();

int txtHash = hash(txt, M);

if (patHash == txtHash) return 0;
for (int i = M; i < N; i++)

{

txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;

}

return N;

Las Vegas version. Check for substring match if hash match;
continue search if false collision.

50

Rabin-Karp fingerprint search

Advantages.
* Extends to 2d patterns.
» Extends to finding multiple patterns.

Disadvantages.

 Arithmetic ops slower than char compares.
* Poor worst-case guarantee.

* Requires backup.

Q. How would you extend Rabin-Karp to efficiently search for any one of
P possible patterns in a text of length N ?

52

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

operation count backup extra
algorithm version _— correct?
guarantee typical IMinput? space
brute force — MN LLIN yes yes 1
full DFA
(Algorithm 5.6) 2N 1.IN no yes MR
Knuth-Morris-Pratt)
mismalch 3N LIN om0 yes M
transitions only
full algorithm 3N N/M yes yes R
Boyer-Moore mismatched char
heuristic only MN N/M yes yes R
(Algorithm 5.7)
Monte Carlo
;
(Algorithm 5.8) 7N 7N no yes !
Rabin-Karp®
Las Vegas 7N* 7N yes yes 1

1 probabilisitic guarantee, with uniform hash function

