° Review: summary of the performance of symbol-table implementations
5.2 Tries yermer Y P

Frequency of operations.

typical case
ordered operations

sunsas

performance

bits pan
COMpariSons way
—ostringnumber implementation ;
2 _implementation) operations on keys
S3z H search insert delete
gaitrie
3

A

evs red-black BST 1.00Ig N 1.00Ig N 1.00Ig N yes compareTo ()
2@ characte

random i
. . equals ()
> R-way tries hashing 1 L hashcode ()

bfamhing\ex‘“ g .
"% i L. » ternary search tries
Section using § o 1 under uniform hashing assumption
bi » string symbol table API
= o length
gi:-‘. link !élsg
g0 2o
E H
index
Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.
Algorithms, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 February 8, 2011 2:26:56 PM

String symbol table basic APT String symbol table implementations cost summary

String symbol table. Symbol table specialized to string keys.

acter accesses (typical case)

implementation SeEnel SN insert space moby.txt actors.txt
public class StringST<Value> P hit miss (GEEILED) Y. ’
1.40

StringST() create an empty symbol table red-black BST L+clg2N clg2N clg2N 4N 97.4
void put(String key, Value val) put key-value pair into the symbol table hashing L L L 4N to 16N 0.76 40.6
Value get(String key) return value paired with given key
boolean contains(String key) is there a value paired with the given key? Parameters
= N = number of strings
moby.txt 1.2 MB 210K 32K .
= L = length of string
actors.txt 82 MB 11.4M 900 K = R=radix

Goal. Faster than hashing, more flexible than binary search trees.

Challenge. Efficient performance for string keys.

Tries

Tries. [from retrieval, but pronounced "try"]

* Store characters and values in nodes (not keys).

* Each node has R children, one for each possible character.
* For now, we do not draw null links.

root

EX. she sells sea shells by the link to trie for all keys

that start with s

» R-way tries link to trie for all keys
that start with she
value for she in node
corresponding to
last key character

key value

by 4

sea 2

i sells 1
ety she 0
with incoming link shells 3
the 5

Anatomy of a trie

Search in a trie

Follow links corresponding to each character in the key.
 Search hit: node where search ends has a non-null value.

¢ Search miss: reach a null link or node where search ends has null value.

get("shells™) get("she™

G O
Q) Q)
® ©
)
@ .

search may zerlmmrirre
t an internal node

O} !

return the value in the

. node corresponding to

return the value in the the last key character (0)
node corresponding to

the last key [ﬁnmm}r (3)

Search in a trie

Follow links corresponding to each character in the key.
e Search hit: node where search ends has a non-null value.
e Search miss: reach a null link or node where search ends has null value.

get("shore™)
get("shell")

=

@

no link for the o,
so return nul1l

\Q

no value in the node
corresponding to the last key
character, so return nu11

Insertion into a trie

Follow links corresponding to each character in the key.
 Encounter a null link: create new node.

* Encounter the last character of the key: set value in that node.

put("sea”, 7 put("shore", 8)

O
O

©

node corresponding to
the last key character
exists, so set its value @7

nodes wrrcs{anding to
characters at nd of the
key do not exist, so create them
and set the value of the last one

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{ use Object instead of Value since
private Object value; S no generic array creation in Java
private Node[] next = new Node[R];

}

characters are implicitly
defined by link index

\ each node has
an array of links
and a value

Trie representation

keys are not
explicitly stored

Trie construction example

characters are implicitly
defined by link index

2 [0

each node has
an array of links
Pfatannunnnnasannnanannnnunn) and a value

Trie representation (R = 26)

key value key value key value
root
she 0 o~ shells 3 O sea 6 @)
® value s n node O O}
s r
® /u’»f ’ O] (e)
of ® @s
D e coresponding o
nodes corresponding to the last key character
. L‘}n})nu‘lms W he end u[lﬁc ©) cxists, so reset its value
ey do not exist, 5o create the
sells 1 O ardselthe v of the st e~~~ (3
©) shore 7 O
& by 4 O
) ©
et oF ®
Gn ®
@7
sea 2
the 5 Q
©
key issequence ®
of characters from
oot to value ©s
Trie representation: Java implementation
Node. A value, plus references to R nodes.
private static class Node
{ use Object instead of Value since
i '] - -~ . . .
prlvate ObJeCt value, no generic array creation in Java
private Node[] next = new Node[R];
}

R-way frie: Java implementation

public class TrieST<Value>

{
private static final int R = 256; <«—— extended ASCII
private Node root;

private static class Node
{ /* see previous slide */ '}

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)
{
if (x == null) x = new Node() ;
if (d == key.length()) { x.val = val; return x; }
char ¢ = key.charAt(d);
x.next[c] = put(x.next[c], key, val, d+l);
return x;

Trie performance

Search miss.

* Could have mismatch on first character.

* Typical case: examine only a few characters (sublinear).
Search hit. Need to examine all L characters for equality.
Space. R null links at each leaf.

(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes space.

R-way trie: Java implementation (continued)

public boolean contains (String key)
{ return get(key) !'= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;

return (Value) x.val; <«——— cast needed

private Node get(Node x, String key, int d)

{
if (x == null) return null;
if (d == key.length()) return x;
char ¢ = key.charAt(d);
return get(x.next[c], key, d+l);

String symbol table implementations cost summary

character accesses (typical case)

search search

implementation N . insert space
hit miss (references)
red-black BST L+clg2N clg2N clg2N 4N
hashing L L L 4N to 16N
R-way trie L logr N L (R+1) N

moby.txt actors.txt

1.40

0.76

1.12

R-way trie.
* Method of choice for small R.
* Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicodel

Digression: out of memory? Digression: out of memory?

A short (approximate) history.
“ 640 K ought to be enough for anybody. ”

— attributed to Bill Gates, 1981 machin . address addressable typical actual 5
. .)) achine yea bits memory memory €0
(commenting on the amount of RAM in personal computers)
12 6 KB 6 KB

PDP-8 1960s $16K
PDP-10 1970s 18 256 KB 256 KB $1M
“ 64 MB of RAM may limit performance of some Windows XP
. . IBM S/360 1970s 24 4 MB 512 KB $1IM
features; therefore, 128 MB or higher is recommended for
best performance.” — Windows XP manual, 2002 VAX 1980s 32 4GB 1 MB $1M
Pentium 1990s 32 4GB 1GB $1K
Xeon 2000s 64 enough 4GB $100
“ 64 bit is coming to desktops, there is no doubt about that.
But apart from Photoshop, I can't think of desktop applications ” future 128+ enough enough $1

where you would need more than 4GB of physical memory, which
is what you have to have in order to benefit from this technology.
Right now, it is costly. ” — Bill Gates, 2003

“ 512-bit words ought to be enough for anybody. ”
— RS, 1995

A modest proposal

Number of atoms in the universe (estimated). < 2266,
Age of universe (estimated). 14 billion years ~ 2%° seconds = 28 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

266 bits ' 89 bits ’ 157 bits '

atom time cushion for whatever

» ternary search tries

Ex. Use 256-way trie to map each atom to location.
* Represent atom as 64 8-bit chars (512 bits).

» 256-way trie wastes 255/256 actual memory.

* Need better use of memory.

Ternary search tries

TST. [Bentley-Sedgewick, 1997]
* Store characters and values in nodes (not keys).
* Each node has three children: smaller (left), equal (middle), larger (right).

Search ina TST

Follow links corresponding to each character in the key.
o If less, take left link; if greater, take right link.
* If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,
move to next char

mismatch: take left or right link,
do not move to next char

return value
associated with
last key character

Ternary search tries

TST. [Bentley-Sedgewick, 1997]
* Store characters and values in nodes (not keys).

* Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys

that start with
aletter before s

each node has

three links \

TST representation of a trie

that start with s

link to TST for all keys

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

®
®)
B © O ©)
_A c@pcycolcofioNicio
X SRR ARG TR WK
QR A2 T NS
O)OICEgO @ P @ ®)
GREORO Q)
)

Q)
ol Pc
f? /e@ £
@D G @)
U)
® @

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
Joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

22

24

TST representation in Java

A TST node is five fields:

¢ A value. private class Node
¢ A character c. { .
private Value val;
e A reference to aleft TST. private char c;
. private Node left, mid, right;
* A reference to a middle TST. }

* A reference to a right TST.

standard array of links (R = 26) ternary search tree (TST)

link for keys

/ that start withs ——___ [

™~ link for keys —

that start with su

Trie node representations

TST: Java implementation (continued)

public boolean contains (String key)
{ return get(key) '= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;
return x.val;

}

private Node get(Node x, String key, int d)
{

if (x == null) return null;

char ¢ = key.charAt(d);

if (c < x.¢) return get(x.left, key, d);
else if (c > x.c) return get(x.right, key, d);
else if (d < key.length() - 1) return get(x.mid, key, d+l);
else return x;

TST: Java implementation

public class TST<Value>
{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)
{
char c = key.charAt(d);

if (x == null) { x = new Node(); x.c = c¢; }

if (c < x.¢) x.left = put(x.left, key, val, d);
else if (¢ > x.c) x.right = put(x.right, key, val, d);
else if (d < s.length() - 1) x.mid = put(x.mid, key, val, d+l);
else x.val = val;

return x;

26

String symbol table implementation cost summary

character accesses (typical case)

search search . space
. : insert
hit miss (references)

implementation moby.txt actors.txt

red-black BST L+clg2N «clg2N clg2N 4N 1.40 97.4

hashing L L L 4Nto 16N 0.76 40.6

R-way trie L log N L R+ 1N 112 out of
Y 9R : memory

TST L+InN InN L+InN 4N 0.72 38.7

Remark. Can build balanced TSTs via rotations to achieve L +log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

28

TST with R? branching at root

Hybrid of R-way trie and TST.
* Do R2-way branching at rooft.
 Each of R2 root nodes points to a TST.

array of 262 roots

eee
TST\ TST\ TS‘I\ TST\ TST\

Q. What about one- and two-letter words?

TST vs. hashing

Hashing.

* Need to examine entire key.

* Search hits and misses cost about the same.
* Need good hash function for every key type.
* No help for ordered symbol table operations.

TSTs.

* Works only for strings (or digital keys).

¢ Only examines just enough key characters.

* Search miss may only involve a few characters.

* Can handle ordered symbol table operations (plus others!).

Bottom line. TSTs are:
* Faster than hashing (especially for search misses).
More flexible than red-black trees (next).

String symbol table implementation cost summary

character accesses (typical case)
search . space
. insert P moby.txt actors.txt
miss (references)

. . se
implementation h

red-black BST L+clg2N clg2N clg2N 4N 1.40 97.4
hashing L L L 4Nto 16N 0.76 40.6
R-way trie L log kN L R+1)N 1.12 CUE Gl
) memory
TST L+InN InN L+InN 4N 0.72 38.7
TST with R2 L+InN InN L+InN 4 N+ R2 0.51 32.7

» string symbol table API

String symbol table APT

Character-based operations. The string symbol table API supports several
useful character-based operations.

by sea sells she shells shore the

Prefix match. Keys with prefix "sh": "she", "shells", and "shore".
Longest prefix. Key that is the longest prefix of "shellsort": "shells".

Wildcard match. Keys that match ".he": "she" and "the".

Deletion in an R-way trie

To delete a key-value pair:
* Find the node corresponding fo key and set value to null.
¢ If that node has all null links, remove that node (and recur).

String symbol table APT

public class StringST<Value>

void

Value

void

boolean

boolean

String
Iterable<String>
Iterable<String>
int

Iterable<String>

StringSTQ

StringST(Alphabet alpha)

create a symbol table with string keys

create a symbol table with string keys
whose characters are taken from alpha.

put key-value pair into the symbol table

put(string key, Value val) (remove key from table if value is nu11)

. value paired with key
get(String key) (nu11 if key is absent)
delete(String key) remove key (and its value) from table
contains(String key) is there a value paired with key?
isEmpty O is the table empty?
TongestPrefix0f(String s) return the longest key that is a prefix of s
keysWithPrefix(String s) all the keys having s as a prefix.

. all the keys that match s (where .

keysThatMatch(String s) matches any character).
size() number of key-value pairs in the table

keys ()

all the keys in the symbol table

Remark. Can also add other ordered ST methods, e.g., £1ooz () and rank ().

Ordered iteration

To iterate through all keys in sorted order:

* Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

delete("shells");

® o
set value
Q) /e null ©)
non-null value non-null link
OF 50 do not remove node s0 do not remove node

(return link to node)
null value and links,

S0 remove HQdU
(return null link)

Deleting a key (and its associated value) from a trie

(return link to node)

keysWithPrefix("");

key

b

by

s

se
sea
sel
sell
sells
sh
she
shell
shells
sho
shor
shore
t

th
the

q

by

shells

shore

the

Collecting the keys in a trie (trace)

Ordered iteration: Java implementation
To iterate through all keys in sorted order:

* Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

public Iterable<String> keys ()

{

Queue<String> queue = new Queue<String>();

collect(root, "", queue);

return queue; sequence of characters
} / on path from root to x
private void collect(Node x, String prefix, Queue<String> q)
{

if (x == null) return;

if (x.val '= null) q.enqueue (prefix);

for (char ¢ = 0; ¢ < R; c++)

collect(x.next[c], prefix + c, q);

}

Prefix matches
Find all keys in symbol table starting with a given prefix.

keysWithPrefix("sh");
key q
sh
she she
shel
shell

sho
shor
shore

find subtrie for all /

keys beginning with "'sh"

collect keys
in that subtrie

Prefix match in a trie

shells shells

shore

public Iterable<String> keysWithPrefix (String prefix)
{

Queue<String> queue = new Queue<String>() ;

Node x = get(root, prefix, 0);

collect (x refix eue) ;
&2 7 GEEE) 6 \mot of subtrie for all strings
return queue; beginning with given prefix

Prefix matches

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

* User types characters one at a time.
» System reports all matching strings.

GOUgle

a|wlelr|T|v|u]i]o|r

als[o|rfanfs]x|c

Wz |x

Wildcard matches

why is my comp|

why is my computer so slow

why is my computer slow

why is my computer so slow all of a sudden
why is my computer so loud

why is my computer running so slowly

why is my computer screen so big

why is my computer freezing

why is my computer beeping

why is my computer slowing down

why is my computer so slow lately

Google Search | | I'm Feeling Lucky

Use wildcard . to match any character in alphabet.

coalizer
coberger acresce
codifier acroach
cofaster acuracy
cofather octarch
cognizer science
cohelper scranch
colander scratch
coleader scrauch
screich
compiler scrinch
e scritch
composer scrunch
computer scudick
cowkeper scutock
co....er 0@o o 0@

40

Wildcard matches

Search as usual if character is not a period:
go down all R branches if query character is a period.

public Iterable<String> keysThatMatch(String pat)
{
Queue<String> queue = new Queue<String>();
collect(root, "", 0, pat, queue);
return queue;

private void collect(Node x, String prefix, String pat, Queue<String> q)
{

if (x == null) return;

int d = prefix.length();

if (d == pat.length() && x.val !'= null) q.enqueue (prefix);

if (d == pat.length()) return;

char next = pat.charAt(d);

for (char ¢ = 0; ¢ < R; c++)

if (next == '.' || next == c)

collect(x.next[c], prefix + c, pat, q);

Longest prefix

Find longest key in symbol table that is a prefix of query string.
 Search for query string.
 Keep track of longest key encountered.

"she" . ”sheTI" "shellsort"
‘90 (90 meh(mhut ‘D
end o ng
\ o valué is 1114/7 0
“earch ends /// return she
swarch ends)~ tast ey on path @
value is not null Q)
return she
search ends at
3 null link
return shells
(last key on path)

Possibilities for TongestPrefix0f ()

41

43

Longest prefix
Find longest key in symbol table that is a prefix of query string.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

"128" represented as 32-bit binary number
"128.112" — for IPv4 (instead of string)
"128.112.055"

"128.112.055.15"

"128.112.136"

"128.112.155.11"
"128.112.155.13"

"128.222"

"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

Note. Not the same as 'ﬂOOf‘. prefix("128.112.100.16") = "128.112"
floor("128.112.100.16") = "128.112.055.15"

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.
* Search for query string.
* Keep track of longest key encountered.

public String longestPrefixOf (String query)
{
int length = search(root, query, 0, 0);
return query.substring(0, length);

private int search(Node x, String query, int d, int length)
{

if (x == null) return length;

if (x.val !'= null) length = d;

if (d == query.length()) return length;

char c = query.charAt(d) ;

return search(x.next[c], query, d+1, length);

42

44

T9 texting
Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input. ["A much faster and more fun way to enter text."]
* Find all words that correspond to given sequence of numbers.
* Press O to see all completion options.

EX. hello h O W

« Multi-tap: 4 433555555666 e
¢« T9: 43556 1| Zabc | Joef

Trar 8tuv @

www.t9.com

45

A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
* Collapse one-way branches in binary trie.
* Thread trie to eliminate multiple node types.

Applications.
* Database search.

* P2P network search.

 IP routing tables: find longest prefix match.

* Compressed quad-tree for N-body simulation.
 Efficiently storing and querying XML documents.

Implementation. One step beyond this lecture.

47

Compressing a frie

Collapsing 1-way branches at bottom.
Internal node stores character; leaf node stores suffix (or full key).

Collapsing interior 1-way branches. putCshe1s", 1);
put(“shellfish", 2);
Node stores a sequence of characters. standard o one-way
trie branching
Q
® &)1 (fish):
®
® internal
Branching
) :
m
®: ®
® T o
— branching
®
OF

Removing one-way branching in a trie

Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

SS1PPIS

1
56 8 91011 12

Applications.
* Linear-time longest repeated substring.
 Computational biology databases (BLAST, FASTA).

Implementation. One step beyond this lecture.

46

48

String symbol tables summary
A success story in algorithm design and analysis.

Red-black BST.
* Performance guarantee: log N key compares.
* Supports ordered symbol table APT.

Hash tables.
* Performance guarantee: constant number of probes.
* Requires good hash function for key type.

Tries. R-way, TST.
* Performance guarantee: log N characters accessed.

* Supports character-based operations.

Bottom line. You can get at anything by examining 50-100 bits (!Il)

49

