Google maps

4.4 Shortest Paths

Medical Center) g <
— At[Princeton g B
(] 2
3
3 &5
V‘aExN ¥
@ fYgeneral S iy
sec 27T, solve s
Prf)g 5 Pripotln.
cycles lg_ . . o
D waights- » edge-weighted digraph API
o Distra’s vertices .
h:r ggggggng,gmsh » shortest-paths properties \
shortest-paths i ' ;
3 “;;”‘;;:,,..mgdge » Dijkstra's algorithm
S e o » edge-weighted DAGs
Zalgorithm : :
3O I ma s » negative weights % phem
USE S s @ # University-Main Campus.
networks 2 3
Exer 9 <&
=
I‘e::';v:l_l v & ormgdsle 62005 Google - Map data 02005 NAVTEQ™ T
Algorithms, 4% Edition - Robert Sedgewick and Kevin Wayne - Copyright © 20022010 February 6, 2011 4:59:40 PM

Continental U.S. routes (August 2010) Shortest outgoing routes on the Internet from Lumeta headquarters

B Verizon group

B AT&T group
Qwest group

B Cable companies

I other backbones
other

@"LUMETA‘

http://www.continental.com/web/en-US/content/travel/routes

map by Lumeta Corporation, March 8, 2006

Shortest paths in a weighted digraph Shortest path variants

Given an edge-weighted digraph, find the shortest (directed) path from s to r. Which vertices?
* Source-sink: from one vertex to another.
* Single source: from one vertex to every other.

edge-weighted digraph * All pairs: between all pairs of vertices.
4->5 0.35
5->4 0.35 (: s
4->7 0.37 V\QD/ Restrictions on edge weights?
5->7 0.28 ~—(2) . :
7-55 0.28 /@ar * Nonnegative weights.
3‘>1 8-3; (a5% % * Arbitrary weights.
-> .
0->2 0.26 * Euclidean weights.
i'>§ 8;’3 shortest path from 0to 6
=-> .
2->7 0.34 g:; g'gi Cycles?
6->2 0.40 :
306 0.5 7->3 0.39 * No cycles.
6->0 0.58 36 0.52 * No "negative cycles."
6->4 0.93

Simplifying assumption. There exists a shortest path from s to each vertex v.

Shortest path applications

* Map routing.

¢ Robot navigation.

e Texture mapping.

¢ Typesetting in TeX.

 Urban traffic planning.

 Optimal pipelining of VLSI chip.

* Telemarketer operator scheduling.

* Routing of telecommunications messages.

* Approximating piecewise linear functions.

* Network routing protocols (OSPF, BGP, RIP).

» Exploiting arbitrage opportunities in currency exchange.
e Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Weighted directed edge APT

public class DirectedEdge
DirectedEdge (int v, int w, double weight) weighted edge v—w
int from() vertex v
int to () vertex w
double weight() weight of this edge
String toString() string representation

: weight :

Idiom for processing an edge e: int v = e.from(), w = e.to();

Edge-weighted digraph APT

public class EdgeWeightedDigraph

EdgeWeightedDigraph (int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph (In in) edge-weighted digraph from input stream

void addEdge (DirectedEdge e) add weighted directed edge e
Iterable<DirectedEdge> adj(int v) edges adjacent from v
int V() number of vertices
int E() number of edges
Iterable<DirectedEdge> edges () all edges in this digraph
String toString() string representation

Conventions. Allow self-loops and parallel edges.

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge

{

private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight)

{
this.v = v;
this.w = w;
this.weight

public int from()

{ return v;

public int to(
{ return w;

public int weight()
{ return weight; }

= weight;

} from() and to () replace
either() and other ()
)

}

Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

35
35
37
28
28
32
38
26
39
29
34
40
52
58
93

AOONNWWNARUNNAG
ocoocoo0o0o00O0O00O0O00O0

adj
(i Bag objects
2 reference to a
3 Di reclt‘ez_iEdge
. [[37 | ”f !
° [~[s[x[32F{s[7[.28}[5]+[35]]

‘\\6\4].93}—»\6\0].58}—»\6\2].40\‘
|

‘ ~

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with pigraph.

public class EdgeWeightedDigraph
{

private final int V;

private final Bag<Edge>[] adj;

public EdgeWeightedDigraph (int V)
{
this.V = V;

adj = (Bag<DirectedEdge>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<DirectedEdge>() ;

public void addEdge (DirectedEdge e)
{

int v = e.from() ;

adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v)

{ return adj[v]; }

similar to edge-weighted
<«———— undirected graph, but only
add edge to v's adjacency list

Single-source shortest paths APT

Goal. Find the shortest path from s to every other vertex.

public class SP

SP (EdgeWeightedDigraph G, int s)

double distTo(int v)
Iterable <DirectedEdge> pathTo(int v)

boolean hasPathTo (int v)

% java SP tinyEWD.txt 0

0 to 0 (0.00):

0 to 1 (1.05): 0->4 0.38 4->5 0.35
0 to 2 (0.26): 0->2 0.26

0 to 3 (0.99): 0->2 0.26 2->7 0.34
0 to 4 (0.38): 0->4 0.38

0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34
0 to 7 (0.60): 0->2 0.26 2->7 0.34

shortest paths from s in graph G
length of shortest path from s to v
shortest path from s to v

is there a path from s to v?

5->1 0.32

7->3 0.39

7->3 0.39 3->6 0.52

Single-source shortest paths APT

Goal. Find the shortest path from s to every other vertex.

public class SP

SP (EdgeWeightedDigraph G, int s)

double

distTo (int v)

Iterable <DirectedEdge> pathTo(int v)

boolean

SP sp = new SP(G, s);

hasPathTo (int v)

for (int v = 0; v < G.V(); v++)

{

StdOut.printf("%d to %d (%.2f): ", s, v, sp.

for (DirectedEdge
StdOut.print (e
StdOut.println() ;

e :
+ "

sp.pathTo (v))
")

shortest paths from s in graph G
length of shortest path from s to v
shortest path from s to v

is there a path from s to v?

distTo(v)) ;

» shortest-paths properties

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest path tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

* distTo[v] is length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTo[]
@ 0 null 0
1 5->1 1.05
e e 2 0->2 0.26
@ O 3 753 0.97
Q 4 0->4 0.38
5 4->5 0.73
) (6) 6 36 1.49
7 2->7 0.60

shortest path tree from 0

Edge relaxation

Relax edge e = v—w.

e distTo[v] is length of shortest known path from s to v.

* distTo[w] is length of shortest known path from s to w.

* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update distTo[w] and edgeTo[w].

v->w successfully relaxes
distTo[v]

3.1
&%O/ - veightof v->wis 1.3
private void relax(DirectedEdge e)

/ ? W) 7.2 (
black edges / _\ int v = e.from(), w = e.to();
arein edgeTo[] CHSERIL if (distTo[w] > distTo[v] + e.weight())

{
® 3.1 i - ai . X
O/ /edgeTo[w] distTo[w] z distTo[v] + e.weight();

<< edgeTo[w] e;
\ }

o

Data structures for single-source shortest paths
Goal. Find the shortest path from s to every other vertex.
Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
* distTo[v] is length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

public double distTo(int v)

{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo (int v)
{
Stack<DirectedEdge> path = new Stack<DirectedEdge>() ;
for (DirectedEdge e = edgeTo[v]; e '= null; e = edgeTo[e.from()])
path.push(e) ;

return path;

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:
* For each vertex v, distTo[v] is the length of some path from s to v.

* For each edge e = v—w, distTo[w] < distTo[v] + e.weight().

Pf. < [necessary]
* Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.

* Then, e gives a path from s to w (through v) of length less than distTo[w].

distTo[v]

3.1

<<O‘*>O/ — weight of v->wis 1.3
W)7.2

20

Shortest-paths optimality conditions Generic shortest-paths algorithm

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff: Generic algorithm (to compute SPT from s)

* For each vertex v, distTo[v] is the length of some path from s to v.

. . . Initialize distTo[s] = 0 and distTo[v] = » for all other vertices.
* For each edge e = v—w, distTo[w] <distTo[v] + e.weight().
Repeat until optimality conditions are satisfied:

Pf. = [sufficient] - Relax any edge.

* Suppose that s =vp— vi— v2— ... — vy = w is a shortest path from s to w.

e Then, distTo[vi] =< distTo[vi-1] + er.weight()
distTo[vk-1] < distTo[vi-z] + ex-1.weight() ei = i" edge on shortest

path from s to w . . 3))
Proposition. Generic algorithm computes SPT from s. «—— assuming SPT exists

distTo[vi] < distTo[vo] + e:i.weight() Pf sketch.

.) o o » Throughout algorithm, distTo[v] is the length of a simple path from s to v
* Collapsing these inequalities and eliminate distTo[vo] = distTo[s] = 0:

and edgeTo[v] is last edge on path.

CHOERO] S CHIEB(] & Cuottgh3() » Qe imigiE() & = @ Cr.uigE() o Each successful relaxation decreases distTo[v] for some v

weight of some path from s to w Rl CFEEEER [(e B * The entry distro[v] can decrease at most a finite number of times. =

e Thus, distTo[w] is the weight of shortest path to w. =

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Efficient implementations. How to choose which edge to relax? » Dijkstra's algorithm
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

Edsger W. Dijkstra: select quotes Edsger W. Dijkstra: select quotes

”»

“ Do only what only you can do.

“In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,

"Object-oriented p:oéti na.

is an exceptionally bad
which could only hav!
originated in Californi
-- Edsger Dijkstr: =

they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should, RS v : -

therefore, be regarded as a criminal offence. Edsger W. Dijkstra
Turing award 1972

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration. ”

“APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.

»

Dijkstra's algorithm Dijkstra's algorithm visualization

 Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest aistTo[] value).
¢ Add vertex to tree and relax all edges incident from that vertex.

distTo[v] edgeTo[v]
4->5 -
i 0.00

4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

o~ -

v
0
1
2
) :
4
5
6
7

cooocoocooocoocooooooo
DU BEWNWNWWNNWWW
CENSROOa®BRN®mIwG

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes SPT in any edge-weighted digraph
with nonnegative weights.

Pf.

* Each edge e = v—w is relaxed exactly once (when v is relaxed),
leaving distTo[w] < distTo[v] + e.weight().

¢ Inequality holds until algorithm terminates because:
- distTo[w] cannot increase <«—— distro[] values are monotone decreasing
- distTo[v] will not change <«—— edge weights are nonnegative and we choose

lowest daistTo[] value at each step

¢ Thus, upon termination, shortest-paths optimality conditions hold. =

Shortest path trees
* Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).
* Add vertex to free and relax all edges incident from that vertex.

25% 50% 100%

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V()];

pq = new IndexMinPQ<Double>(G.V()) ;

for (int v = 0; v < G.V(); v++)
distTo[v] = Double. POSITIVE_INFINITY;
distTo[s] = 0.0;

pgq.insert(s, 0.0);
while (!pq.isEmpty()) —

{

relax vertices in order
of distance from s

int v = pqg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;

if (pg.contains(w)) pg.decreaseKey(w, distTo[w]);
else Pq.insert (w, distTo[w]);

<«——— update PQ

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

* Maintain a set of explored vertices S.

e Grow S by exploring edges with exactly one endpoint leaving S.

DFs. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.

f(jiZ o 1

Challenge. Express this insight in reusable Java code.

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: ¥ insert, I delete-min, E decrease-key.

8 mplementstion
1 \ 1 '

array
binary heap log vV log vV log v ElogV
d-way heap
(ohnson 1975) d loga V d loga V loga V Elogev V
Fibonacci heap
1t logVvt 1t E+VlogV
(Fredman-Tarjan 1984) °9 +Viog
+amortized
Bottom line.

* Array implementation optimal for dense graphs.

* Binary heap much faster for sparse graphs.

* d-way heap worth the trouble in performance-critical situations.
* Fibonacci heap best in theory, but not worth implementing.

» edge-weighted DAGs

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.
Is it easier to find shortest paths than in a general digraph?

A. Yes!

source

5->4 0.35

4->7 0.37 (1) G)
5->7 0.28 (5)

5-51 0.32 (7) @
4->0 0.38 (o)
0->2 0.26

357 039 & ©
1->3 0.29

7->2 0.34

6->2 0.40

3-56 0.52

6->0 0.58

6->4 0.93

Shortest paths in edge-weighted DAGs

public class AcyclicSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;

public AcyclicSP(EdgeWeightedDigraph G, int s)
{
edgeTo
distTo

= new DirectedEdge[G.V()];

= new double[G.V()];

for (int v = 0; v < G.V(); v++)
distTo[v] = Double. POSITIVE_INFINITY;

distTo[s] = 0.0;

Topological topological = new Topological (G); <«——+—— topological order

for (int v : topological.order())

for (DirectedEdge e : G.adj(v))
relax(e) ;

Shortest paths in edge-weighted DAGs

Topological sort algorithm.
* Consider vertices in topologically order.
* Relax all edges incident from vertex.

O—
(O O—@

@&@@?&@@’_&@@@?&@

topological order: 51364702

Shortest paths in edge-weighted DAGs

Topological sort algorithm.
* Consider vertices in topologically order.
* Relax all edges incident from vertex.

Proposition. Topological sort algorithm computes SPT in any edge-weighted
DAG in time proportional fo E + V.

Pf.
* Each edge e = v—w is relaxed exactly once (when v is relaxed),
Ieaving distTo[w] < distTo[v] + e.weight().
¢ Inequality holds until algorithm terminates because:
- distTo[w] cahnhot increase <«—— distTo[] values are monotone decreasing
- distTo[v] will not Change <«—— because of topological order, no edge pointing to v

will be relaxed after v is relaxed

* Thus, upon termination, shortest-paths optimality conditions hold. =

40

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
¢ Negate all weights.
* Find shortest paths.

* Negate weights in result.

longest paths input

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

OCoo0ooO00O00OOO0OOOO

35
37
28
32
38
26
39
29
34
40
52
58
93

shortest paths input

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

35
37
28
32
38
26
39
29
34
40
52
58
93

equivalent: reverse sense of equality in relax ()

Key point. Topological sort algorithm works even with negative edge weights.

Critical path method

41

CPM. To solve a parallel job-scheduling problem, create acyclic edge-weighted

digraph:
 Source and sink vertices. job _ duration
9 o a 0
* Two vertices (begin and end) for each job. 2 ‘;i‘;
* Three edges for each job. i
0 0 . 4 38.0
- begin to end (weighted by duration) s a0
o . 6 21.0
- source to begin (O weight) SN
- end to sink (O weight) ER-2E0
9 29.0
job ~Lmz]nb]xrmh pm?dmm am}wmm/
“ /"C / zero weight)
ot ~_ — 5
dummm @_, .L, —
21)< 36
O © /C ®
29
N : 38

: 45

must complete

1
2

AN W w

before

79

43

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence
constraints, schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time while respecting the constraints.

b duration "Mustcomplete

S
S

before
0 41.0 1 7 9
1 51.0 2
2 50.0
3 36.0
4 38.0
5 45.0 !
6 21.0 3 8 ! 3
7 32.0 3 8 0 ° 6 8 2
8 32.0 2 5 4
9 29.0 4 6 r T T T T 1

0 il 70 91 123 173

Parallel job scheduling solution

42

Critical path method

CPM. Use longest path from the source to schedule each job.

0 il 70 91 123 173

Parallel job scheduling solution

51
— O
mu‘rj/ian \@L .i’ -
/ \ critical path

44

Deep water

Deadlines. Add extra constraints to the parallel job-scheduling problem.
Ex. "Job 2 must start no later than 12 time units after job 4 starts.”

-70

deadline

Consequences.
* Corresponding shortest-paths problem has cycles (and negative weights).
* Possibility of infeasible problem (negative cycles).

45

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

(?_ 4 _)?
Dijkstra selects vertex 3 immediately after 0.

2 3

But shortest path from 0 to 3 is 0—>1—-2-3.
-9 4

Re-weighting. Add a constant to every edge weight doesn't work.

13

Adding 9 to each edge weight changes the

11 15 shortest path from 0—-1—2—3 to 0—3.

Bad news. Need a different algorithm.

47

» negative weights

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

digraph
4->5 0.35
5->4 -0.66 © G)
457 037 (5)
5->7 0.28] ‘\® @
7->5 0.28 ¥ 0
5->1 0.32
0->4 0.38 o o
0->2 0.26
7->3 0.39
1->3 0.29 negative cycle (-0.66 + 0.37 + 0.28)
2->7 0.34 5545755
6->2 0.40
3->6 0.52
6->0 0.58 shortest path from 0 to 6
6->4 0.93 0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s

46

48

Shortest paths with negative weights: dynamic programming algorithm

Dynamic programming algorithm

Initialize distTo[s] = 0 and distTo[v] = » for all other vertices.

Repeat V times:
- Relax each edge.

for (int i = 1; i <= G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e) ;

Proposition. Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to E x V.
Pf idea. After phase i, found shortest path containing at most i edges.

Bellman-Ford algorithm frace

q smin'r dgeTol] edgeTo[]
\ edgeTo .
1 ®_>® 0 @
3 @ 2 ©® @
- 7
®@ @ o 5 5 4->5
® recolored edge o
>
queue vertices for
each phase are in red edgeTo[]
edgeTo[]
0= = L e
3 5
5 (0 ©)
©
@ @ (6 5 75
@ 6 356
red: this pass edgio[] . edgig[]
1
‘6‘ @ 2 652 %«—@ 2 62
0 @ @ © 30 153
2 © 4 64 @ © : ?:‘;
\ O 6 36
7 27

black: next pass

phase i (relax each edge)

49

Bellman-Ford algorithm

Observation. If distTo[v] does not change during phase i,

no need to relax any edge incident from v in phase i +1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy

of each vertex on queue (why?)

Overall effect.

* The running time is still proportional to £ x ¥ in worst case.

* But much faster than that in practice.

Bellman-Ford algorithm

public class BellmanFordSP

{
private double[] distTo;
private DirectedEdge[] edgeTo;
private int[] onQ;
private Queue<Integer> queue;

public Bell 'ordSPT (.

{

distTo = new double[G.V()];

dg = new Di [6.Vv()1:
ong = new int[G.V()];
queue = new Queue<Integer>();

for (int v = 0; v < V; v++)

distTo[v] = Double.POSITIVE_INFINITY;

distTo[s] = 0.0;

queue.enqueue (s) ;
while ('queue.isEmpty())
{
int v = queue.dequeue();
onQ[v] = false;
for (DirectedEdge e : G.adj(v))
relax(e) ;

igraph G, int s)

private void relax(DiregtedEdge e)

int v = e.from(), w
if (distTo[w] > dis

{

queue of vertices whose
distTo[] value changes

e.to();
o[v] + e.weight())

distTo[w] = distTo[v] + e.weight();

edgeTo([w] = e;

if ('onQ[w])

{
queue.enqueue (W) ;
onQ([w] = true;

Bellman-Ford algorithm visualization

edges on queue in red

phases
4 7 10
13 SPT

Finding a negative cycle

Negative cycle. Add two method to the API for se.

boolean hasNegativeCycle () is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

digraph

4->5 0.35

5->4 -0.66 © G)
4->7 0.37 (5)

5->7 0.28 :‘\® @

7->5 0.28 ©

5->1 0.32 o e
0->4 0.38

0->2 0.26

7->3 0.39

1->3 0.29 negative cycle (-0.66 +0.37 +0.28)
2->7 0.34 5545755

6->2 0.40

3->6 0.52

6->0 0.58

6->4 0.93

Single source shortest-paths implementation: cost summary

algorithm typical =
E+V E+V \

. no directed
topological sort
cycles
Dijkstra no negative
Elog VvV Elog Vv \
(binary heap) weights °9 °9
dynamic programming EV EV \2
no negative
cycles
Bellman-Ford E+V EV \Y

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop,
updating distTo[] and edgeTo[] entries of vertices in the cycle.

® @ < ©, ®
edgeTo[v]]
: > ©

Proposition. If any vertex v is updated in phase V, there exists a negative
cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

1

0.741 0.657 1.061 1.011

1.350 1 0.888 1.433 1.366
GBP 1.521 1.126 1 1.614 1.538
CHF 0.943 0.698 0.620 1 0.953
CAD 0.995 0.732 0.650 1.049 1

Ex. $1,000 = 741Euros = 1,012.206 Canadian dollars = $1,007.14497.

I

1000 x 0.741 x 1.366 x 0.995 = 1007.14497

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

¢ Let weight of edge v—w be - In (exchange rate from currency v to w).
¢ Multiplication turns to addition; > 1 turns to <0.

* Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

-1n(.741) -In(1.366) -1n(.995)

.2998 - .3119 + .0050 = -.0071 \

weight w
with —In(w\

Remark. Fastest algorithm is extraordinarily valuable!

Negative cycle application: arbitrage detection

Currency exchange graph.

* Vertex = currency.

* Edge = transaction, with weight equal to exchange rate.

* Find a directed cycle whose product of edge weights is > 1.

0.741 * 1.366 * .995 = 1.00714497

Challenge. Express as a hegative cycle detection problem.

Shortest paths summary

Dijkstra's algorithm.
* Nearly linear-time when weights are nonnegative.
* Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

* Arise in applications.

* Faster than Dijkstra's algorithm.
* Negative weights are no problem.

Negative weights and negative cycles.

* Arise in applications.

* If no negative cycles, can find shortest paths via Bellman-Ford.
* If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

60

