
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · February 2, 2011 9:34:36 AM

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

1.4 Analysis of Algorithms Cast of characters

2

Programmer needs to develop
a working solution.

Client wants to solve
problem efficiently.

Theoretician wants
to understand.

Basic blocking and tackling
is sometimes necessary.
[this lecture]

Student might play any
or all of these roles
someday.

3

Running time

Analytic Engine

how many times do you
have to turn the crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage (1864)

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

4

this course (COS 226)

theory of algorithms (COS 423)

client gets poor performance because programmer

did not understand performance characteristics

5

Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

• Applications: DVD, JPEG, MRI, astrophysics, ….

• Brute force: N 2 steps.

• FFT algorithm: N log N steps, enables new technology.
Friedrich Gauss

1805

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

6

Some algorithmic successes

N-body simulation.

• Simulate gravitational interactions among N bodies.

• Brute force: N 2 steps.

• Barnes-Hut algorithm: N log N steps, enables new research. Andrew Appel
PU '81

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

Q. Will my program be able to solve a large practical input?

Key insight. [Knuth 1970s] Use scientific method to understand performance.

The challenge

7

Why is my program so slow ? Why does it run out of memory ?

8

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the natural world.

• Hypothesize a model that is consistent with the observations.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Feature of the natural world = computer itself.

9

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

10

Example: 3-sum

3-sum. Given N distinct integers, how many triples sum to exactly zero?

Context. Deeply related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
4

a[i] a[j] a[k] sum

1 30 -40 10 0

2 30 -20 -10 0

3 -40 40 0 0

4 -10 0 10 0

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int count = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 int[] a = StdArrayIO.readInt1D();
 StdOut.println(count(a));
 }
}

11

3-sum: brute-force algorithm

check each triple

we ignore any
integer overflow

Q. How to time a program?
A. Manual.

12

Measuring the running time

% java ThreeSum < 1Kints.txt

70

% java ThreeSum < 2Kints.txt

% java ThreeSum < 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?
A. Automatic.

13

Measuring the running time

client code

public static void main(String[] args)
{
 int[] a = StdArrayIO.readInt1D();
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
}

 public class Stopwatch public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

Q. How to time a program?
A. Automatic.

14

Measuring the running time

implementation (part of stdlib.jar)

public class Stopwatch
{
 private final long start = System.currentTimeMillis();

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }
}

 public class Stopwatch public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

Run the program for various input sizes and measure running time.

15

Empirical analysis

N time (seconds) †

250 0.0

500 0.0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

Standard plot. Plot running time T (N) vs. input size N.

16

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log-log plot. Plot running time vs. input size N using log-log scale.

Regression. Fit straight line through data points: a N b.
Hypothesis. The running time is about 1.006 ! 10 –10 ! N 2.999 seconds.

17

Data analysis

slope

power law

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

lg(T (N)) = b lg N + c
b = 2.999
c = -33.2103

T (N) = a N b, where a = 2 c

18

Prediction and validation (experimental)

Hypothesis. The running time is about 1.006 ! 10 –10 ! N 2.999 seconds.

Predictions.

• 51.0 seconds for N = 8,000.

• 408.1 seconds for N = 16,000.

Observations.

validates hypothesis!

N time (seconds) †

8,000 51.1

8,000 51.0

8,000 51.1

16,000 410.8

order of growth
of running time

is about N3

19

Experimental algorithmics

System independent effects.

• Algorithm.

• Input data.

System dependent effects.

• Hardware: CPU, memory, cache, …

• Software: compiler, interpreter, garbage collector, …

• System: operating system, network, other applications, …

Bad news. Difficult to get precise measurements.
Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

determines exponent b
in power law

helps determines
constant a in power law

20

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

21

Mathematical models for running time

Total running time: sum of cost ! frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth

1974 Turing Award

Cost of basic operations

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point multiply a * b 4.2

floating-point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

...

22

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Novice mistake. Abusive string concatenation.

Cost of basic operations

23

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10 N

24

Example: 1-sum

Q. How many instructions as a function of input size N ?

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0)
 count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment N to 2 N

25

Example: 2-sum

Q. How many instructions as a function of input size N ?

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment N to 2 N

tedious to count exactly

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
�

N

2

�

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

26

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment N to 2 N

cost model = array accesses

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
�

N

2

�

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. ⅙ N 3 + 20 N + 16!! ~ ⅙ N 3

Ex 2. ⅙ N 3 + 100 N 4/3 + 56! ~ ⅙ N 3

Ex 3. ⅙ N 3 - " N 2 + ⅓ N! ~ ⅙ N 3

27

Simplification 2: tilde notation

discard lower-order terms
(e.g., N = 1000: 500 thousand vs. 166 million)

Technical definition. f(N) ~ g(N) means

!

lim
N" #

 f (N)
g(N)

 = 1

Leading-term approximation

N 3/6

N 3/6 ! N 2/2 + N /3

166,167,000

1,000

166,666,667

N

• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

28

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration N + 2 ~ N

assignment statement N + 2 ~ N

less than compare ½ (N + 1) (N + 2) ~ ½ N2

equal to compare ½ N (N − 1) ~ ½ N2

array access N (N − 1) ~ N2

increment N to 2 N ~ N to ~ 2 N

Q. Approximately how many array accesses as a function of input size N ?

A. ~ N 2 array accesses.

Bottom line. Use cost model and tilde notation to simplify frequency counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

29

Example: 2-sum

"inner loop"

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
�

N

2

�

Q. Approximately how many array accesses as a function of input size N ?

A. ~ " N 3 array accesses.

Bottom line. Use cost model and tilde notation to simplify frequency counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

30

Example: 3-sum

�
N

3

�
=

N(N − 1)(N − 2)
3!

∼ 1
6
N3

"inner loop"

31

Estimating a discrete sum

Q. How to estimate a discrete sum?
A1. Take COS 340.
A2. Replace the sum with an integral, and use calculus!

Ex 1. 1 + 2 + … + N.

Ex 2. 1 + 1/2 + 1/3 + … + 1/N.

Ex 3. 3-sum triple loop.

N�

i=1

1
i
∼

� N

x=1

1
x

dx = lnN

N�

i=1

i ∼
� N

x=1
x dx ∼ 1

2
N2

N�

i=1

N�

j=i

N�

k=j

1 ∼
� N

x=1

� N

y=x

� N

z=y
dz dy dx ∼ 1

6
N3

In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line. We use approximate models in this course: T(N) ~ c N 3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = array access
B = integer add

C = integer compare

D = increment

E = variable assignment

Mathematical models for running time

32

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)

A reasonable model

• Specific models of this form are known for many algorithms (stay tuned).

• General laws of this form are known in many circumstances.
(Interested? Take courses in combinatorics and complex analysis)

Notes

• The existence of the constant a is more significant than its value.

• We often drop the constant and refer to the order of growth.

• The small set of functions
 1, log N, N, N log N, N 2, and N 3

 suffices to describe order of growth of running time of typical algorithms.

• Some algorithms take exponential (~ d N) time (we consider such
algorithms in the last few lectures)

The running time of your program is ~ a N b (lg N)c

Computing the constants (the hard way)

Knuth showed that it is possible in principle to precisely predict running time

• develop a mathematical model for the frequency of execution of each
instruction in the program

• determine the time required to execute each instruction

• multiply and sum

Hypothesis: T(N) ~ aN c

GFs

model
analysis

asymptotics

. . .

. . .

algorithm and model-dependent
 part of the constants

(easier to determine now than in the 1970s)

cycle time

instruction
set code

cache
structure

. . .

. . .

machine-dependent
part of the constants

(harder to determine now than in the 1970s)

Computing the constants (easy way)

Run the program!

Hypothesis: T(N) ~ aN b

T(2N0) a (2N0)b

T(N0) aN0b
~

= 2b

2. Compute T(N0) and T(2N0) by running it

3. Calculate b as follows:

1. Implement the program

lg(T(2N0)/T(N0) → b as N0 grows

4. Calculate a as follows:

T(N0)/N0b → a as N0 grows

Note: log factor is more difficult

N time ratio lg ratio

250 0.0 –

500 0.0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8.0 3.0

8,000 51.1 8.0 3.0

 a ≈ 51.1/ 80003 ≈ 9.98 × 10 –11

 b ≈ 3

Predicting performance (the easy way)

Don’t bother computing the constants!

Hypothesis: T(N) ~ aN b

T(2N0) a (2N0)b

T(N0) aN0b
~

= 2b

2. Run it for N0, 2N0, 4N0, 8N0, . . .

3. Ratio of running times approaches 2b

1. Implement the program

N time ratio

250 0.0

500 0.0 4.8

1,000 0.1 6.9

2,000 0.8 7.7

4,000 6.4 8.0

8,000 51.1 8.0

16,000

4. Multiply by ratio 2b to predict next value
predicted value 408.8

predicted order of growth N3 since lg 8 = 3

= 51.1 * 8.0

Plenty of caveats, but provides a basis for predicting program performance

409.3

37

War story (from COS 126)

Q. How long does this program take as a function of N ?

 String s = StdIn.readString();
 int N = s.length();
 ...
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 distance[i][j] = ...
 ...

N time

1,000 0.11

2,000 0.35

4,000 1.6

8,000 6.5

N time

250 0.5

500 1.1

1,000 1.9

2,000 3.9

Jenny ~ c1 N2 seconds Kenny ~ c2 N seconds

38

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

Good news. the small set of functions
 1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe order of growth of the running time of typical algorithms.

Common order-of-growth classifications

39

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K

ti
m

e
ti

m
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Common order-of-growth classifications

40

growth
rate name typical code framework description example T(2N) / T(N)

1 constant a = b + c; statement
add two
numbers

1

log N logarithmic while (N > 1)
{ N = N / 2; ... } divide in half binary search ~ 1

N linear for (int i = 0; i < N; i++)
{ ... } loop

find the
maximum

2

N log N linearithmic [see mergesort lecture]
divide

and conquer
mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop
check all

pairs
4

N3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop
check all
triples

8

2N exponential [see combinatorial search lecture]
exhaustive

search
check all
subsets

T(N)

Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

Practical implications of order-of-growth

41

growth

rate

problem size solvable in minutesproblem size solvable in minutes

rate

1970s 1980s 1990s 2000s

1 any any any any

log N any any any any

N millions
tens of

millions

hundreds of

millions
billions

N log N
hundreds of

thousands
millions millions

hundreds of

millions

N2 hundreds thousand thousands
tens of

thousands

N3 hundred hundreds thousand thousands

2N 20 20s 20s 30

42

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

43

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

44

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

45

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid
return 4

46

Binary search: Java implementation

Trivial to implement?

• First binary search published in 1946; first bug-free one published in 1962.

• Java bug in Arrays.binarySearch() not fixed until 2006.

Invariant. If key appears in the array a[], then a[lo] " key " a[hi].

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

one 3-way
compare

47

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + lg N compares to search in a
sorted array of size N.

Def. T (N) # # compares to binary search in a sorted subarray of size N.

Binary search recurrence. T (N) ! T (N / 2) + 1 for N > 1, with T (1) = 1.

Pf sketch.
left or right half

 T (N) ! T (N / 2) + 1

 ! T (N / 4) + 1 + 1

 ! T (N / 8) + 1 + 1 + 1

 . . .

 ! T (N / N) + 1 + 1 + … + 1

 = 1 + lg N

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Step 1. Sort the N numbers.

Step 2. For each pair of numbers a[i]
and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N 2 log N.

• Step 1: N 2 with insertion sort.

• Step 2: N 2 log N with binary search.

input

 30 -40 -20 -10 40 0 10 5

sort

 -40 -20 -10 0 5 10 30 40

binary search

(-40, -20) 60
(-40, -10) 30
(-40, 0) 40
(-40, 5) 35
(-40, 10) 30
…
(-40, 40) 0
…
(-10, 0) 10
…
(-20, 10) 10
…
(10, 30) -40
(10, 40) -50
(30, 40) -70

An N2 log N algorithm for 3-sum

48

only count if
a[i] < a[j] < a[k]

to avoid
double counting

Comparing programs

Hypothesis. The N 2 log N three-sum algorithm is significantly faster in
practice than the brute-force N 3 one.

Bottom line. Typically, better order of growth $ faster in practice.

49

N time (seconds)

1,000 0.14

2,000 0.18

4,000 0.34

8,000 0.96

16,000 3.67

32,000 14.88

64,000 59.16

N time (seconds)

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

ThreeSum.java

ThreeSumDeluxe.java

50

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

Best case. Lower bound on cost.

• Determined by “easiest” input.

• Provides a goal for all inputs.

Worst case. Upper bound on cost.

• Determined by “most difficult” input.

• Provides a guarantee for all inputs.

Average case. Expected cost for random input.

• Need a model for “random” input.

• Provides a way to predict performance.

Types of analyses

51

Ex 1. Array accesses for brute-force 3 sum.

Best: ~ " N 3

Average: ~ " N 3

Worst: ~ " N 3

Ex 2. Compares for binary search.

Best: ~ 1

Average: ~ lg N

Worst: ~ lg N

Best case. Lower bound on cost.
Worst case. Upper bound on cost.
Average case. “Expected” cost.

Actual data might not match input model?

• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.

Types of analyses

52

Common mistake. Interpreting big-Oh as an approximate model.

53

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N2

10 N2

10 N2 + 22 N log N

10 N2 + 2 N + 37

provide

approximate

model

Big Theta
asymptotic

growth rate
Θ(N2)

½ N2

10 N2

 5 N2 + 22 N log N + 3N

classify

algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N2

100 N

 22 N log N + 3 N

develop

upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N2

N5

 N3 + 22 N log N + 3 N

develop

lower bounds

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

• Big-Oh notation suppresses leading constant.

• Big-Oh notation only provides upper bound (not lower bound).

54

time/memory

input size

f(N)
values represented

by O(f(N))

input size

c f(N)

values represented
by ~ c f(N)

time/memory

O-notation considered harmful

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation

• not at all useful for predicting performance

Scientific method calls for tilde-notation.

• an effective path to predicting performance (stay tuned)

Hypothesis: Running time is ~aNc

Theorem: Running time is O(Nc) !

✓

O-notation is useful for many reasons, BUT

Common error: Thinking that O-notation is useful for predicting performance.

56

‣ observations
‣ mathematical models
‣ order-of-growth classifications
‣ dependencies on inputs
‣ memory

57

Typical memory requirements for primitive types in Java

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 1 million bytes.
Gigabyte (GB). 1 billion bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

for primitive types

58

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

Ex. An N-by-N array of doubles consumes ~ 8N 2 bytes of memory.

type bytes

char[] 2N + 16

int[] 4N + 16

double[] 8N + 16

type bytes

char[][] ~ 2 M N

int[][] ~ 4 M N

double[][] ~ 8 M N

for one-dimensional arrays for two-dimensional arrays

59

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 1. A Complex object consumes 24 bytes of memory.

8 bytes (double)

public class Complex
{
 private double re;
 private double im;
 ...
}

8 bytes (double)

8 bytes (object overhead)

24 bytes

public class Complex
{
 private double real;
 private double imag;
...
}

 real

 imag

object
overhead

Complex object 24 bytes

double
value

60

Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 2. A virgin String of length N consumes ~ 2N bytes of memory.

4 bytes (int)

public class String
{
 private int offset;
 private int count;
 private int hash;
 private char[] value;
 ...
}

4 bytes (int)

4 bytes (int)

4 bytes (reference to array)
2N + 16 bytes (char[] array)

8 bytes (object overhead)

2N + 40 bytes

A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon = genome.substring(6, 3);

 16

object
overhead

char
values

C G
C C
T G
G C
G T
C T
G T
A C

 0
16

object
overhead

genome

 6
3

object
overhead

 codon

array

array

hash

hash

...

 value

public class String
{
 private char[] value;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytesString object (Java library)

substring example

reference

int
values

61

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N ?

public class WeightedQuickUnionUF
{
 private int[] id;
 private int[] sz;

 public WeightedQuickUnionUF(int N)
 {
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 for (int i = 0; i < N; i++) sz[i] = 1;
 }

 public boolean find(int p, int q)
 { ... }

 public void union(int p, int q)
 { ... }
}

Turning the crank: summary

Empirical analysis.

• Execute program to perform experiments.

• Assume power law and formulate a hypothesis for running time.

• Model enables us to make predictions.

Mathematical analysis.

• Analyze algorithm to count frequency of operations.

• Use tilde notation to simplify analysis.

• Model enables us to explain behavior.

Scientific method.

• Mathematical model is independent of a particular system;
applies to machines not yet built.

• Empirical analysis is necessary to validate mathematical models
and to make predictions.

62

