
1

1

Portability

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 8

2

Goals of this Lecture

• Learn to write code that works with multiple:

•  Hardware platforms

•  Operating systems

•  Compilers

•  Human cultures

• Why?

•  Moving existing code to a new context is easier/cheaper

than writing new code for the new context

•  Code that is portable is (by definition) easier to move;

portability reduces software costs

•  Relative to other high-level languages (e.g., Java), C is

notoriously non-portable

3

The Real World is Heterogeneous

• Multiple kinds of hardware

•  32-bit Intel Architecture

•  64-bit IA, PowerPC, Sparc, MIPS, Arms, …

• Multiple operating systems

•  Linux

•  Windows, Mac, Sun, AIX, …

• Multiple character sets

•  ASCII

•  Latin-1, Unicode, …

• Multiple human alphabets and languages

2

4

Portability

• Goal: Run program on any system

•  No modifications to source code required

•  Program continues to perform correctly

  Ideally, the program performs well too

5

C is Notoriously Non-Portable

• Recall C design goals…

•  Create Unix operating system and associated software

•  Reasonably “high level”, but…

•  Close to the hardware for efficiency

• So C90 is underspecified

•  Compiler designer has freedom to reflect the design of

the underlying hardware

• But hardware systems differ!

•  So C compilers differ

• Extra care is required to write portable C code

Structure of This Talk

• General heuristics

• Heuristics for handling differences

•  Hardware

•  OS

•  Compiler

•  Library

•  Cultural

• General themes

•  Be aware of your assumptions

•  Avoid being too clever

6

3

7

General Heuristics

Some general portability heuristics…

8

Intersection

(1) Program to the intersection

•  Use only features that are common to all target

environments

•  I.e., program to the intersection of features, not the

union

•  When thatʼs not possible…

9

Encapsulation

(2) Encapsulate

•  Localize and encapsulate features that are not in the

intersection

•  Use parallel source code files -- so non-intersection

code can be chosen at link-time

•  Use parallel data files – so non-intersection data (e.g.

textual messages) can be chosen at run-time

•  When thatʼs not possible, as a last resort…

4

10

Conditional Compilation

(3) Use conditional compilation

•  And above all…

#ifdef __UNIX__
 /* Unix-specific code */
#endif
…
#ifdef __WINDOWS__
 /* MS Windows-specific code */
#endif
…

11

Test!!!

(4) Test the program with multiple:

•  Hardware (Intel, MIPS, SPARC, …)

•  Operating systems (Linux, Solaris, MS Windows, …)

•  Compilers (GNU, MS Visual Studio, …)

•  Cultures (United States, Europe, Asia, …)

12

Hardware Differences

• Some hardware differences, and
corresponding portability heuristics…

5

13

Natural Word Size

• Obstacle: Natural word size

•  In some systems, natural word size is 4 bytes

•  In some (esp. older) systems, natural word size is 2

bytes

•  In some (esp. newer) systems, natural word size is 8

bytes

• C90 intentionally does not specify sizeof(int);
depends upon natural word size of underlying
hardware

14

Natural Word Size (cont.)

(5) Donʼt assume data type sizes

•  Not portable:

•  Portable:

int *p;
…
p = malloc(4);
…

int *p;
…
p = malloc(sizeof(int));
…

15

Right Shift

• Obstacle: Right shift operation

•  In some systems, right shift operation is logical

  Right shift of a negative signed int fills with zeroes

•  In some systems, right shift operation is arithmetic

  Right shift of a negative signed int fills with ones

• C90 intentionally does not specify semantics of
right shift; depends upon right shift operator of
underlying hardware

6

16

Right Shift (cont.)

(6) Donʼt right-shift signed ints

  Not portable:

  Portable:

  But if you must: shift and mask/set high bit as needed

…
-3 >> 1
…

Logical shift => 2147483646

Arithmetic shift => -2

…
/* Don't do that!!! */
…

17

Byte Order

• Obstacle: Byte order

•  Some systems (e.g. Intel) use little endian byte order

  Least significant byte of a  

multi-byte entity is stored 
at lowest memory address

•  Some systems (e.g. SPARC) use big endian byte order

  Most significant byte of a 

multi-byte entity is stored 
at lowest memory address

00000101
00000000
00000000
00000000

1000
1001
1002
1003

The int 5 at address 1000:

00000000
00000000
00000000
00000101

1000
1001
1002
1003

The int 5 at address 1000:

18

Byte Order (cont.)

(7) Donʼt rely on byte order in code

•  Not portable:

•  Portable:

•  But if you must extract bytes: shift and mask

int i = 5;
char c;
…
c = *(char*)&i; /* Silly, but legal */

Little endian:

 c = 5

Big endian:

 c = 0;

int i = 5;
char c;
…
/* Don't do that! Or... */
c = (char)i;

7

19

Byte Order (cont.)

(8) Use text for data exchange

•  Not portable:

unsigned short s = 5;
FILE *f = fopen("myfile", "w");
fwrite(&s, sizeof(unsigned short), 1, f);

00000101 00000000

Run on a little

endian computer

Run on a big

endian computer:

Reads 1280!!!

fwrite()writes

raw data to a file

unsigned short s;
FILE *f = fopen("myfile", "r");
fread(&s, sizeof(unsigned short), 1, f);

fread() reads

raw data from a file

myfile

20

Byte Order (cont.)

•  Portable:

unsigned short s = 5;
FILE *f = fopen("myfile", "w");
fprintf(f, "%hu", s);

00110101

fprintf() converts

raw data to ASCII text

Run on a big or

little endian

computer

Run on a big or

little endian

computer:

Reads 5

myfile

unsigned short s;
FILE *f = fopen("myfile", "r");
fscanf(f, "%hu", &s);

fscanf()reads ASCII

text and converts to

raw data

ASCII code for ʻ5ʼ

21

Byte Order (cont.)

If you must exchange raw data…

(9) Write and read one byte at a time

unsigned short s = 5;
FILE *f = fopen("myfile", "w");
fputc(s >> 8, f); /* high-order byte */
fputc(s & 0xFF, f); /* low-order byte */

00000000 00000101

Run on a big or

little endian

computer

Run on a big or

little endian

computer:

Reads 5

unsigned short s;
FILE *f = fopen("myfile", "r");
s = fgetc(f) << 8; /* high-order byte */
s |= fgetc(f) & 0xFF; /* low-order byte */

myfile

Decide on

big-endian data

exchange format

8

22

OS Differences

• Some operating system differences,
and corresponding portability
heuristics…

23

End-of-Line Characters

• Obstacle: Representation of “end-of-line”

•  Unix (including Mac OS/X) represents end-of-line as 1

byte: 00001010 (binary)

•  Mac OS/9 represents end-of-line as 1 byte: 00001101

(binary)

•  MS Windows represents end-of-line as 2 bytes:

00001101 00001010 (binary)

24

End-of-Line Characters (cont.)

(10) Use binary mode for textual data exchange

•  Not portable:

  Trouble if read via fgetc() on “wrong” operating system

FILE *f = fopen("myfile", "w");
fputc('\n', f);

00001010 00001101 00001101 00001010

Run on Unix
 Run on Mac OS/9
 Run on MS Windows

\n \r \r \n

Open the file

in ordinary

text mode

9

25

End-of-Line Characters (cont.)

•  Portable:

  No problem if read via fgetc() in binary mode on “wrong”
operating system

  I.e., there is no “wrong” operating system!

FILE *f = fopen("myfile", "wb");
fputc('\n', f);

00001010

Run on Unix,

Mac OS/9, or

MS Windows

\n

Open the file

in binary mode

26

Data Alignment

•  Obstacle: Data alignment

•  Some hardware requires data to be aligned on particular boundaries

•  Some operating systems impose additional constraints:

•  Moreover…

•  If a structure must begin on an x-byte boundary, then it also must

end on an x-byte boundary

  Implication: Some structures must contain padding

OS
 char
 short
 int
 double

Linux
 1
 2
 4
 4

MS Windows
 1
 2
 4
 8

Start address must be evenly divisible by:

27

Data Alignment (cont.)

(11) Donʼt rely on data alignment

•  Not portable:

struct S {
 int i;
 double d;
}
…
struct S *p;
…
p = (struct S*)malloc(sizeof(int)+sizeof(double));

Windows:
 i

pad

d

Linux:
 i

d

Allocates 12 bytes;

too few bytes on

MS Windows

10

28

Data Alignment (cont.)

•  Portable:

struct S {
 int i;
 double d;
}
…
struct S *p;
…
p = (struct S*)malloc(sizeof(struct S));

Windows:
 i

pad

d

Linux:
 i

d

Allocates

•  12 bytes on Linux

•  16 bytes on MS Windows

29

Character Codes

• Obstacle: Character codes

•  Some operating systems (e.g. IBM OS/390) use the

EBCDIC character code

•  Some systems (e.g. Unix, MS Windows) use the ASCII

character code

30

Character Codes (cont.)

(12) Donʼt assume ASCII

•  Not portable:

•  A little better:

•  Portable:

if ((c >= 65) && (c <= 90)) …

if ((c >= 'A') && (c <= 'Z')) …

#include <ctype.h>
…
if (isupper(c)) …

Assumes ASCII

Assumes that

uppercase char

codes are

contiguous; not

true in EBCDIC

For ASCII:

 (c >= 'A') && (c <= 'Z')

For EBCDIC:

 ((c >= 'A') && (c <= 'I'))

 || ((c >= 'J') && (c <= 'R'))

 || ((c >= 'S') && (c <= 'Z'))

11

31

Compiler Differences

• Compilers may differ because they:

•  Implement underspecified features of the C90 standard

in different ways, or

•  Extend the C90 standard

• Some compiler differences, and
corresponding portability heuristics…

32

Compiler Extensions

• Obstacle: Non-standard extensions

•  Some compilers offer non-standard extensions

33

Compiler Extensions

(13) Stick to the standard language

•  For now, stick to C90 (not C99)

•  Not portable:

•  Portable:

…
for (int i = 0; i < 10; i++)
 …

int i;
…
for (i = 0; i < 10; i++)
 …

Many systems allow

definition of loop control

variable within for
statement, but a C90

compiler reports error

12

34

Evaluation Order

• Obstacle: Evaluation order

•  C90 specifies that side effects and function calls must be

completed at “;”

•  But multiple side effects within the same expression can

have unpredictable results

35

Evaluation Order (cont.)

(14) Donʼt assume order of evaluation

•  Not portable:

•  Portable (either of these, as intended):

strings[i] = names[++i];

i++;
strings[i] = names[i];

strings[i] = names[i+1];
i++;

i is incremented before

indexing names; but has i
been incremented before

indexing strings?

C90 doesnʼt say

36

Evaluation Order (cont.)

•  Not portable:

•  Portable (either of these, as intended):

printf("%c %c\n", getchar(), getchar());

i = getchar();
j = getchar();
printf("%c %c\n", i, j);

i = getchar();
j = getchar();
printf("%c %c\n", j, i);

Which call of getchar()
is executed first? C90

doesnʼt say

13

37

Char Signedness

• Obstacle: Char signedness

•  C90 does not specify signedness of char

•  On some systems, char means signed char

•  On other systems, char means unsigned char 

38

Char Signedness (cont.)

(15) Donʼt assume signedness of char

•  If necessary, specify “signed char” or “unsigned char”

•  Not portable:

•  Portable:

int a[256];
char c;
c = (char)255;
…
… a[c] …

int a[256];
unsigned char c;
c = 255;
…
… a[c] …

If char is unsigned, then a[c] is a[255]

 => fine

If char is signed, then a[c] is a[-1]

 => out of bounds

39

Char Signedness (cont.)

•  Not portable:

•  Portable:

int i;
char s[MAX+1];
for (i = 0; i < MAX; i++)
 if ((s[i] = getchar()) == '\n') || (s[i] == EOF))
 break;
s[i] = ‘\0’;

If char is unsigned, then

this always is FALSE

int c, i;
char s[MAX+1];
for (i = 0; i < MAX; i++) {
 if ((c = getchar()) == '\n') || (c == EOF))
 break;
 s[i] = c;
}
s[i] = ‘\0’;

14

40

Library Differences

• Some library differences, and
corresponding portability heuristics… 

41

Library Extensions

• Obstacle: Non-standard functions

•  “Standard” libraries bundled with some development

environments (e.g. GNU, MS Visual Studio) offer non-
standard functions

42

Library Extensions

(16) Stick to the standard library functions

•  For now, stick to the C90 standard library functions

•  Not portable:

•  Portable:

•  Alternative: write your own strdup if needed

char *s = "hello";
char *copy;
…
copy = strdup(s);
…

char *s = "hello";
char *copy;
…
copy = (char*)malloc(strlen(s) + 1);
strcpy(copy, s);

strdup() is available in

many “standard” libraries,

but is not defined in C90

15

43

Cultural Differences

• Some cultural differences, and
corresponding portability heuristics…

44

Character Code Size

• Obstacle: Character code size

•  United States

  Alphabet requires 7 bits => 1 byte per character

  Popular character code: ASCII

•  Western Europe

  Alphabets require 8 bits => 1 byte per character

  Popular character code: Latin-1

•  China, Japan, Korea, etc.

  Alphabets require 16 bits => 2 bytes per character

  Popular character code: Unicode

45

Character Code Size

(17) Donʼt assume 1-byte character code size

•  Not portable:

•  Portable:

  C90 has no good solution

  C99 has “wide character” data type, constants, and associated

functions

  But then beware of byte-order portability problems!

  Future is not promising

char c = 'a';

#include <stddef.h>
…
wchar_t c = L'\x3B1'; /* Greek lower case alpha */

16

46

Human Language

• Obstacle: Humans speak different natural
languages!

47

Human Language (cont.)

(18) Donʼt assume English

•  Not portable:

•  Canʼt avoid natural language! So…

/* somefile.c */

…
printf("Bad input");
…

48

Human Language (cont.)

•  Encapsulate code

  Choose appropriate 
“message.c” file at 
link-time

/* somefile.c */

#include "messages.h"
…
printf(getMsg(5));
…

/* englishmessages.c */
char *getMsg(int msgNum) {
 switch(msgNum) {
 …
 case 5:
 return "Bad input";
 …
 }
}

/* spanishmessages.c */
char *getMsg(int msgNum) {
 switch(msgNum) {
 …
 case 5:
 return "Mala entrada";
 …
 }
}

/* messages.h */
char *getMsg(int msgNum);

M
es

sa
ge

s
m

od
ul

e,

w
ith

 m
ul

tip
le

 im
pl

em
en

ta
tio

ns

17

49

Human Language (cont.)

•  Maybe even better: encapsulate data

  Choose appropriate “message.txt” file at run-time

/* messages.c */

enum {MSG_COUNT = 100};
char *getMsg(int msgNum) {
 static char *msg[MSG_COUNT];
 static int firstCall = 1;
 if (firstCall) {
 <Read all messages from
 appropriate messages.txt
 file into msg>
 firstCall = 0;
 }
 return msg[msgNum];
}

/* englishmessages.txt */

…
Bad input
…

/* spanishmessages.txt */

…
Mala entrada
…

/* messages.h */
char *getMsg(int msgNum);

M
es

sa
ge

s
m

od
ul

e

50

Summary

• General heuristics

(1) Program to the intersection

(2) Encapsulate

(3) Use conditional compilation (as a last resort)

(4) Test!!!

51

Summary (cont.)

• Heuristics related to hardware differences

(5) Donʼt assume data type sizes

(6) Donʼt right-shift signed ints

(7) Donʼt rely on byte order in code

(8) Use text for data exchange

(9) Write and read 1 byte at a time

• Heuristics related to OS differences

(10) Use binary mode for textual data exchange

(11) Donʼt rely on data alignment

(12) Donʼt assume ASCII

18

52

Summary (cont.)

• Heuristics related to compiler differences

(13) Stick to the standard language

(14) Donʼt assume evaluation order

(15) Donʼt assume signedness of char

• Heuristic related to library differences

(16) Stick to the standard library

• Heuristics related to cultural differences

(17) Donʼt assume 1-byte char code size

(18) Donʼt assume English

