
1

Optimizing Dynamic Memory
Management!

Jennifer Rexford!

2

Goals of this Lecture!
• Details of K&R heap manager!

• Heap mgr optimizations related to Assignment #6!
•  Faster free() via doubly-linked list, redundant sizes,

and status bits!
•  Faster malloc() via binning!

• Other heap mgr optimizations!
•  Best/good fit block selection!
•  Selective splitting!
•  Deferred coalescing!
•  Segregated data!
•  Segregated meta-data!
•  Memory mapping!

3

Part 1:!

Details of the K&R Heap Manager!

4

An Implementation Challenge!
• Need information about each free block!

•  Starting address of the block of memory!
•  Length of the free block!
•  Pointer to the next block in the free list!

• Where should this information be stored?!
•  Number of free blocks is not known in advance!
•  So, need to store the information on the heap!

• But, wait, this code is what manages the heap!!!!
•  Canʼt call malloc() to allocate storage for this info!
•  Canʼt call free() to deallocate the storage, either!

5

Store Information in the Free Block!

Solution:!
• Store the information directly in the block!

•  Since the memory isnʼt being used for anything anyway!
•  And allows data structure to grow and shrink as needed!

6

Block Headers!
•  Every free block has a header, containing:!

•  Pointer to (i.e., address of) the next free block!
•  Size of the free block!

•  Challenge: programming outside the type system!

size user data

p (address returned to the user) header

7

Free List: Circular Linked List!
• Free blocks, linked together!

•  Example: circular linked list!

• Keep list in order of increasing addresses!
•  Makes it easier to coalesce adjacent free blocks!

In
use

In
use

In
use

Free list

8

Malloc: First-Fit Algorithm!
• Start at the beginning of the list!

• Sequence through the list!
•  Keep a pointer to the previous element!

• Stop when reaching first block that is big enough!
•  Patch up the list!
•  Return a pointer to the user!

p p prev p prev

9

Malloc: First Case: Perfect Fit!
• Suppose the first fit is a perfect fit!

•  Remove the block from the list!
•  Link the previous free block with the next free block!
•  Return the current to the user (skipping header)!

p prev
p+1

10

Malloc: Second Case: Big Block!
• Suppose the block is bigger than requested!

•  Divide the free block into two blocks!
•  Keep first (now smaller) block in the free list!
•  Allocate the second block to the user!
•  Bonus: No need to manipulate links!

p p

11

Free!
• User passes a pointer to the memory block !
• void free(void *ap);

• free() function inserts block into the list!
•  Identify the start of entry !
•  Find the location in the free list!
•  Add to the list, coalescing entries, if needed!

ap bp

12

Free: Finding Location to Insert!
•  Start at the beginning!

•  Sequence through the list!
•  Stop at last entry before the to-be-freed element!

In
use

FREE
ME

In
use

Free list
bp p

13

Free: Handling Corner Cases!
• Check for wrap-around in memory!

•  To-be-freed block is before first entry in the free list, or!
•  To-be-freed block is after the last entry in the free list!

In
use

FREE
ME

In
use

Free list
bp p

14

Free: Inserting Into Free List!
• New element to add to free list

•  Insert in between previous and next entries
• But, there may be opportunities to coalesce!

bp

p p->s.ptr

15

Coalescing With Neighbors!
• Scanning the list finds the location for inserting!

•  Pointer to to-be-freed element: bp
•  Pointer to previous element in free list: p

• Coalescing into larger free blocks!
•  Check if contiguous to upper and lower neighbors!

In
use

FREE
ME

In
use

Free list
bp p

lower upper

16

Coalesce With Upper Neighbor!
• Check if next part of memory is in the free list!
•  If so, make into one bigger block
• Else, simply point to the next free element

bp

upper

p p->s.ptr

p p->s.ptr

17

Coalesce With Lower Neighbor!
• Check if previous part of memory is in the free list!

•  If so, make into one bigger block

bp p

lower

p->s.ptr

p p->s.ptr

18

Strengths of K&R Approach!
•  Advantages!

•  Simplicity of the code!
•  Optimizations to malloc()

•  Splitting large free block to
avoid wasting space!

•  Optimization to free()
•  Roving free-list pointer is

left at the last place a block
was allocated!

•  Coalescing contiguous free
blocks to reduce
fragmentation!

p

bp

upper

p p->s.ptr

19

Weaknesses of K&R Approach!
•  Inefficient use of memory: fragmentation!

•  First-fit policy can leave lots of “holes” of free blocks in memory!

•  Long execution times: linear-time overhead!
• malloc() scans the free list to find a big-enough block!
• free() scans the free list to find where to insert a block!

•  Accessing a wide range of memory addresses in free list!
•  Can lead to large amount of paging to/from the disk!

In
use

In
use

In
use

Free list

20 8 50

20

Part 2:!

Optimizations Related to Assignment 6!

21

Faster Free!
• Performance problems with K&R free()

•  Scanning the free list to know where to insert!
•  Keeping track of the “previous” node to do the insertion!

• Doubly-linked, non-circular list !
•  Header!

•  Size of the block (in # of units)!
•  Flag indicating whether the block is free or in use!
•  If free, a pointer to the next free block!

•  Footer!
•  Size of the block (in # of units)!
•  If free, a pointer to the previous free block!

h
e
a
d

f
o
o
t

22

Size: Finding Next Block!
• Go quickly to next block in memory!

•  Start with the userʼs data portion of the block!
•  Go backwards to the head of the block!

•  Easy, since you know the size of the header!
•  Go forward to the head of the next block!

•  Easy, since you know the size of the current block!

23

Size: Finding Previous Block!
• Go quickly to previous chunk in memory!

•  Start with the userʼs data portion of the block!
•  Go backwards to the head of the block!

•  Easy, since you know the size of the header!
•  Go backwards to the footer of the previous block!

•  Easy, since you know the size of the footer!
•  Go backwards to the header of the previous block!

•  Easy, since you know the size from the footer!

24

Pointers: Next Free Block!
• Go quickly to next free block in memory!

•  Start with the userʼs data portion of the block!
•  Go backwards to the head of the block!

•  Easy, since you know the size of the header!
•  Go forwards to the next free block!

•  Easy, since you have the next free pointer!

25

Pointers: Previous Free Block!
• Go quickly to previous free block in memory!

•  Start with the userʼs data portion of the block!
•  Go backwards to the head of the block!

•  Easy, since you know the size of the header!
•  Go forwards to the footer of the block!

•  Easy, since you know the block size from the header!
•  Go backwards to the previous free block!

•  Easy, since you have the previous free pointer!

26

Efficient Free !
• Before: K&R!

•  Scan the free list till you find the place to insert!
•  Needed to see if you can coalesce adjacent blocks!

•  Expensive for loop with several pointer comparisons!

• After: with header/footer and doubly-linked list!
•  Coalescing with the previous block in memory!

•  Check if previous block in memory is also free!
•  If so, coalesce!

•  Coalescing with the next block in memory the same way!
•  Add the new, larger block to the front of the linked list!

27

But Malloc is Still Slow…!
• Still need to scan the free list!

•  To find the first, or best, block that fits!

• Root of the problem!
•  Free blocks have a wide range of sizes!

• Solution: binning!
•  Separate free lists by block size!
•  Implemented as an array of free-list pointers!

28

Binning Strategies: Exact Fit!
• Have a bin for each block size, up to a limit!

•  Advantages: no search for requests up to that size!
•  Disadvantages: many bins, each storing a pointer!

• Except for a final bin for all larger free blocks!
•  For allocating larger amounts of memory!
•  For splitting to create smaller blocks, when needed!

1
2
3
4

> 4

1 1 1

3 3

5 8

29

Binning Strategies: Range!
• Have a bin cover a range of sizes, up to a limit!

•  Advantages: fewer bins!
•  Disadvantages: need to search for a big enough block!

• Except for a final bin for all larger free chunks!
•  For allocating larger amounts of memory!
•  For splitting to create smaller blocks, when needed!

1-2
3-4
5-6
7-8
> 8

1 2 1

6 5

10 14

30

Suggestions for Assignment #6!
•  Debugging memory management code is hard!

•  A bug in your code might stomp on the headers or footers!
•  … making it very hard to understand where you are in memory!

•  Suggestion: debug carefully as you go along!
•  Write little bits of code at a time, and test as you go!
•  Use assertion checks very liberally to catch mistakes early!
•  Use functions to apply higher-level checks on your list!

•  E.g,. all free-list blocks are marked as free!
•  E.g., each block pointer is within the heap range!
•  E.g., the block size in header and footer are the same!

•  Suggestion: draw lots and lots of pictures!

31

Part 3:!

Other Optimizations!

32

Best/Good Fit Block Selection!
•  Observation:!

•  K&R uses “first fit” (really, “next fit”) strategy!
•  Example: malloc(8) would choose the 20-byte block!

•  Alternative: “best fit” or “good fit” strategy!
•  Example: malloc(8) would choose the 8-byte block!
•  Applicable if not binning, or if a bin has blocks of variable sizes!
•  Pro: Minimizes internal fragmentation and splitting!
•  Con: Increases cost of choosing free block!

In
use

In
use

In
use

Free list

20 8 50

33

Selective Splitting!
•  Observation:!

•  K&R malloc() splits whenever chosen block is too big!
•  Example: malloc(14) splits the 20-byte block!

•  Alternative: selective splitting!
•  Split only when the saving is big enough!
•  Example: malloc(14) allocates the entire 20-byte block!
•  Pro: Reduces external fragmentation!
•  Con: Increases internal fragmentation!

In
use

In
use

In
use

Free list

8 50 20

34

Deferred Coalescing!
•  Observation:!

•  K&R does coalescing in free() whenever possible!

•  Alternative: deferred coalescing!
•  Wait, and coalesce many blocks at a later time!
•  Pro: Handles “malloc(x);free();malloc(x)” sequences well!
•  Con: Complicates algorithms!

In
use

FREE
ME

In
use

Free list
bp p

lower upper

35

Segregated Data!
•  Observation:!

•  Splitting and coalescing consume lots of overhead!

•  Problem:!
•  How to eliminate that overhead?!

•  Solution: Segregated data!
•  Make use of the virtual memory concept…!
•  Store each binʼs blocks in a distinct virtual memory page!
•  Elaboration…!

36

Segregated Data (cont.)!
•  Segregated data!

•  Each bin contains blocks of fixed sizes!
•  E.g. 32, 64, 128, …!

•  All blocks within a bin are from same virtual memory page!
•  Malloc never splits! Examples:!

•  Malloc for 32 bytes => provide 32!
•  Malloc for 5 bytes => provide 32!
•  Malloc for 100 bytes => provide 128!

•  Free never coalesces!!
•  Free block => examine address, infer virtual memory page, infer

bin, insert into that bin!
•  Pro: Completely eliminates splitting and coalescing overhead!
•  Pro: Eliminates most meta-data; only forward links are required (no

backward links, sizes, status bits, footers)!
•  Con: Some usage patterns cause excessive external fragmentation!

37

Segregated Meta-Data!
•  Observations:!

•  Meta-data (block sizes, status flags, links, etc.) are scattered across
the heap, interspersed with user data!

•  Heap mgr often must traverse meta-data!

•  Problem 1:!
•  User error easily can corrupt meta-data!

•  Problem 2:!
•  Frequent traversal of meta-data can cause excessive page faults!

•  Solution: Segregated meta-data!
•  Make use of the virtual memory concept…!
•  Store meta-data in a distinct (segregated) virtual memory page from

user data!

38

Memory Mapping!
•  Observations:!

•  Heap mgr might want to release heap memory to OS (e.g. for use as
stack)!

•  Heap mgr can call brk(currentBreak–x) to release freed
memory to OS, but…!

•  Difficult to know when memory at high end of heap is free, and…!
•  Often freed memory is not at high end of heap!!

•  Problem:!
•  How can heap mgr effectively release freed memory to OS?!

•  Solution: Memory mapping!
•  Make use of virtual memory concept…!
•  Allocate memory via mmap() system call!
•  Free memory via munmap() system call!

39

mmap() and munmap()
•  Typical call of mmap()

p = mmap(NULL, size, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANON, 0, 0);!
•  Asks the OS to map a new private read/write area of virtual memory

containing size bytes!
•  Returns the virtual address of the new area on success, NULL on

failure!

•  Typical call of munmap()
status = munmap(p, size);!
•  Unmaps the area of virtual memory at virtual address p consisting of
size bytes!

•  Returns 1 on success, 0 on failure!

•  See Bryant & OʼHallaron book and man pages for details!

40

Using mmap() and munmap()
Typical strategy:!

•  Allocate small block =>!
•  Call brk() if necessary!
•  Manipulate data structures described earlier in this lecture!

•  Free small block =>!
•  Manipulate data structures described earlier in this lecture!
•  Do not call brk()

•  Allocate large block =>!
•  Call mmap()

•  Free large block =>!
•  Call munmap()

41

Summary!
• Details of K&R heap manager!

• Heap mgr optimizations related to Assignment #6!
•  Faster free() via doubly-linked list, redundant sizes,

and status bits!
•  Faster malloc() via binning!

• Other heap mgr optimizations!
•  Best/good fit block selection!
•  Selective splitting!
•  Deferred coalescing!
•  Segregated data!
•  Segregated meta-data!
•  Memory mapping!

