

Interdomain Routing Security

COS 461: Computer Networks

Jennifer Rexford

Interdomain Routing

- AS-level topology
 - –Nodes are Autonomous Systems (ASes)
 - -Edges are links and business relationships

Border Gateway Protocol (BGP)

- ASes exchange reachability information
 - –Destination: block of addresses (an "IP prefix")
 - -AS path: sequence of ASes along the path
- Policies configured by network operators
 - -Path selection: which of the paths to use?
 - -Path export: which neighbors to tell?

Goals of Today's Lecture

- BGP security vulnerabilities
 - -BGP session
 - -Prefix ownership
 - –AS-path attribute
- Improving BGP security
 - -Protective filtering
 - -Cryptographic variant of BGP
 - Anomaly-detection schemes
- Data-plane attacks
- Difficulty of upgrading BGP

BGP Session Security

TCP Connection Underlying BGP Session

- BGP session runs over TCP
 - -TCP connection between neighboring routers
 - -BGP messages sent over TCP connection
 - Makes BGP vulnerable to attacks on TCP

Attacks on Session Security

- Confidentiality
 - Eavesdropping by tapping the link
 - Inferring routing policies and stability

- Integrity
 - Tampering by dropping, modifying, or adding packets
 - Changing, filtering, or replaying BGP routes
- Availability
 - -Resetting the session or congesting the link
 - Disrupting communication and overloading the routers

Defending Session Security is Easy

- BGP routing information is propagated widely
 - Confidentiality isn't all that important
- Two end-points have a business relationship
 - -Use known IP addresses and ports to communicate
 - Can agree to sign and encrypt messages
- Limited physical access to the path
 - Direct physical link, often in same building
- Low volume of special traffic
 - Filter packets from unexpected senders
 - Filter packets that travel more than one hop
 - Can give BGP packets higher priority

Validity of the routing information: Origin authentication

IP Address Ownership and Hijacking

- IP address block assignment
 - -Regional Internet Registries (ARIN, RIPE, APNIC)
 - -Internet Service Providers
- Proper origination of a prefix into BGP
 - -By the AS who owns the prefix
 - -... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - -Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - -Registries of prefix ownership are inaccurate

Prefix Hijacking 12.34.0.0/16 12.34.0.0/16

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations 11

Hijacking is Hard to Debug

- The victim AS doesn't see the problem
 - -Picks its own route
 - -Might not even learn the bogus route
- May not cause loss of connectivity
 - -E.g., if the bogus AS snoops and redirects
 - -... may only cause performance degradation
- Or, loss of connectivity is isolated
 - -E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - -Launching traceroute from many vantage points₁₂

Sub-Prefix Hijacking

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

How to Hijack a Prefix

- The hijacking AS has
 - -Router with BGP session(s)
 - Configured to originate the prefix
- Getting access to the router
 - -Network operator makes configuration mistake
 - -Disgruntled operator launches an attack
 - Outsider breaks in to the router and reconfigures
- Getting other ASes to believe bogus route
 - Neighbor ASes do not discard the bogus route
 - -E.g., not doing protective filtering

YouTube Outage on Feb 24, 2008

- YouTube (AS 36561)
 - Web site www.youtube.com
 - -Address block 208.65.152.0/22
- Pakistan Telecom (AS 17557)
 - Receives government order to block access to YouTube
 - -Starts announcing 208.65.153.0/24 to PCCW (AS 3491)
 - All packets directed to YouTube get dropped on the floor
- Mistakes were made
 - -AS 17557: announcing to everyone, not just customers
 - -AS 3491: not filtering routes announced by AS 17557
- Lasted 100 minutes for some, 2 hours for others

Timeline (UTC Time)

- 18:47:45
 - First evidence of hijacked /24 route propagating in Asia
- 18:48:00
 - Several big trans-Pacific providers carrying the route
- 18:49:30
 - Bogus route fully propagated
- 20:07:25
 - YouTube starts advertising the /24 to attract traffic back
- 20:08:30
 - Many (but not all) providers are using the valid route

Timeline (UTC Time)

- 20:18:43
 - YouTube starts announcing two more-specific /25 routes
- 20:19:37
 - Some more providers start using the /25 routes
- 20:50:59
 - -AS 17557 starts prepending ("3491 17557 17557")
- 20:59:39
 - -AS 3491 disconnects AS 17557
- 21:00:00
 - All is well, videos of cats flushing toilets are available

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

Another Example: Spammers

- Spammers sending spam
 - Form a (bidrectional) TCP connection to a mail server
 - Send a bunch of spam e-mail
 - Disconnect and laugh all the way to the bank
- But, best not to use your real IP address
 - Relatively easy to trace back to you
- Could hijack someone's address space
 - -But you might not receive all the (TCP) return traffic
 - And the legitimate owner of the address might notice
- How to evade detection
 - Hijack unused (i.e., unallocated) address block in BGP
 - Temporarily use the IP addresses to send your spam

BGP AS Path

Bogus AS Paths

- Remove ASes from the AS path
 - -E.g., turn "701 3715 88" into "701 88"
- Motivations
 - Make the AS path look shorter than it is
 - Attract sources that normally try to avoid AS 3715
 - -Help AS 88 look like it is closer to the Internet's core
- Who can tell that this AS path is a lie?
 - Maybe AS 88 *does* connect to AS 701 directly

Bogus AS Paths

- Add ASes to the path
 - -E.g., turn "701 88" into "701 3715 88"
- Motivations
 - Trigger loop detection in AS 3715
 - Denial-of-service attack on AS 3715
 - Or, blocking unwanted traffic coming from AS 3715!
 - Make your AS look like is has richer connectivity
- Who can tell the AS path is a lie?
 - -AS 3715 could, if it could see the route
 - AS 88 could, but would it really care as long as it received data traffic meant for it?

Bogus AS Paths

- Adds AS hop(s) at the end of the path
 - -E.g., turns "701 88" into "701 88 3"
- Motivations
 - Evade detection for a bogus route
 - -E.g., by adding the legitimate AS to the end
- Hard to tell that the AS path is bogus...
 - Even if other ASes filter based on prefix ownership

Invalid Paths

- AS exports a route it shouldn't
 - AS path is a valid sequence, but violated policy
- Example: customer misconfiguration
 - Exports routes from one provider to another
- ... interacts with provider policy
 - Provider prefers customer routes
 - -... so picks these as the best route

- ... leading the dire consequences
 - Directing all Internet traffic through customer
- Main defense
 - Filtering routes based on prefixes and AS path

Missing/Inconsistent Routes

- Peers require consistent export
 - -Prefix advertised at all peering points
 - -Prefix advertised with same AS path length

Reasons for violating the policy

-Trick neighbor into "cold potato"

-Configuration mistake

- Main defense
 - –Analyzing BGP updates
 - —... or data traffic
 - for signs of inconsistency

BGP Security Today

- Applying best common practices (BCPs)
 - -Securing the session (authentication, encryption)
 - -Filtering routes by prefix and AS path
 - -Packet filters to block unexpected control traffic
- This is not good enough
 - -Depends on vigilant application of BCPs
 - ... and not making configuration mistakes!
 - Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route

Proposed Enhancements to BGP

S-BGP Secure Version of BGP

Address attestations

- Claim the right to originate a prefix
- Signed and distributed out-of-band
- Checked through delegation chain from ICANN

Route attestations

- Distributed as an attribute in BGP update message
- Signed by each AS as route traverses the network
- Signature signs previously attached signatures

S-BGP can validate

- -AS path indicates the order ASes were traversed
- No intermediate ASes were added or removed

S-BGP Deployment Challenges

- Complete, accurate registries
 - -E.g., of prefix ownership
- Public Key Infrastructure
 - To know the public key for any given AS
- Cryptographic operations
 - -E.g., digital signatures on BGP messages
- Need to perform operations quickly
 - To avoid delaying response to routing changes
- Difficulty of incremental deployment
 - Hard to have a "flag day" to deploy S-BGP

Incrementally Deployable Solutions?

- Backwards compatible
 - No changes to router hardware or software
 - No cooperation from other ASes
- Incentives for early adopters
 - Security benefits for ASes that deploy the solution
 - and further incentives for others to deploy
- What kind of solutions are possible?
 - Detecting suspicious routes
 - -... and then filtering or depreferencing them

Detecting Suspicious Routes

- Monitoring BGP update messages
 - Use past history as an implicit registry
- E.g., AS that announces each address block
 - Prefix 18.0.0.0/8 usually originated by AS 3
- E.g., AS-level edges and paths
 - -Never seen the subpath "7018 88 1785"
- Out-of-band detection mechanism
 - Generate reports and alerts
 - Internet Alert Registry: http://iar.cs.unm.edu/
 - Prefix Hijack Alert System: http://phas.netsec.colostate.edu/

Avoiding Suspicious Routes

- Soft response to suspicious routes
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
- Why is this good enough?
 - Some attacks will go away on their own
 - -Let someone else be the victim instead of you
 - Give network operators time to investigate
- How well would it work?
 - If top ~40 largest ASes applied the technique
 - most other ASes are protected, too
 - -... since they mostly learn routes from the big ASes

http://www.cs.princeton.edu/~jrex/papers/pgbgp++.pdf

What About Packet Forwarding?

Control Plane vs. Data Plane

Control plane

- BGP is a routing protocol
- -BGP security concerns validity of routing messages
- I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute

Data plane

- Routers forward data packets
- -Supposedly along the path chosen in the control plane
- But what ensures that this is true?

Data-Plane Attacks, Part 1

- Drop packets in the data plane
 - While still sending the routing announcements
- Easier to evade detection
 - Especially if you only drop some packets
 - Like, oh, say, BitTorrent or Skype traffic
- Even easier if you just slow down some traffic
 - How different are normal congestion and an attack?
 - Especially if you let ping/traceroute packets through?

Data-Plane Attacks, Part 2

- Send packets in a different direction
 - Disagreeing with the routing announcements
- Direct packets to a different destination
 - -E.g., one the adversary controls
- What to do at that bogus destination?
 - Impersonate the legitimate destination (e.g., to perform identity theft, or promulgate false information)
 - Snoop on the traffic and forward along to real destination
- How to detect?
 - -Traceroute? Longer than usual delays?
 - End-to-end checks, like site certificate or encryption?

Fortunately, Data-Plane Attacks are Harder

- Adversary must control a router along the path
 - So that the traffic flows through him
- How to get control a router
 - Buy access to a compromised router online
 - Guess the password
 - Exploit known router vulnerabilities
 - Insider attack (disgruntled network operator)
- Malice vs. greed
 - Malice: gain control of someone else's router
 - Greed: Verizon DSL blocks Skype to gently encourage me to pick up my landline phone to use Verizon long distance \$ervice ©

What's the Internet to Do?

BGP is So Vulnerable

- Several high-profile outages
 - http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 - http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml
 - http://www.renesys.com/blog/2006/01/coned steals the net.shtml
 - http://www.renesys.com/blog/2008/02/pakistan hijacks youtube 1.shtml
 - http://www.theregister.co.uk/2010/04/09/china bgp interweb snafu/
- Many smaller examples
 - Blackholing a single destination prefix
 - Hijacking unallocated addresses to send spam
- Why isn't it an even bigger deal?
 - Really, most big outages are configuration errors
 - Most bad guys want the Internet to stay up
 - ... so they can send unwanted traffic

BGP is So Hard to Fix

- Complex system
 - -Large, with around 40,000 ASes
 - Decentralized control among competitive ASes
 - Core infrastructure that forms the Internet
- Hard to reach agreement on the right solution
 - S-BGP with public key infrastructure, registries, crypto?
 - Who should be in charge of running PKI and registries?
 - Worry about data-plane attacks or just control plane?
- Hard to deploy the solution once you pick it
 - Hard enough to get ASes to apply route filters
 - Now you want them to upgrade to a new protocol
 - ... all at the exact same moment?

Conclusions

- Internet protocols designed based on trust
 - The insiders are good guys
 - All bad guys are outside the network
- Border Gateway Protocol is very vulnerable
 - Glue that holds the Internet together
 - Hard for an AS to locally identify bogus routes
 - Attacks can have very serious global consequences
- Proposed solutions/approaches
 - Secure variants of the Border Gateway Protocol
 - Anomaly detection schemes, with automated response
 - Broader focus on data-plane availability

Backup Slides

Encrypting and Decrypting With Keys

- Encrypt to hide message contents
 - Transforming message contents with a key
 - Message cannot be read without the right key
- Symmetric key cryptography
 - Same secret key for encrypting and decrypting
 - makes it hard to distribute the secret key
- Asymmetrical (or public key) cryptography
 - Sender uses public key to encrypt message
 - Can be distributed freely!
 - Receiver uses private key to decrypt message

Authenticating the Sender and Contents

- Digital signature for authentication
 - Data attached to the original message
 - ... to identify sender and detect tampering
 - Sender encrypts message digest with private key
 - Receiver decrypts message digest with public key
 - ... and compares with message digest it computes

Certificate

- Collection of information about a person or thing
 - ... with a digital signature attached
- A trusted third party attaches the signature

Public Key Infrastructure (PKI)

- Problem: getting the right key
 - How do you find out someone's public key?
 - How do you know it isn't someone else's key?
- Certificate Authority (CA)
 - Bob takes public key and identifies himself to CA
 - CA signs Bob's public key with digital signature to create a certificate
 - Alice can get Bob's key and verify the certificate with the CA
- Register once, communicate everywhere
 - Each user only has the CA certify his key
 - Each user only needs to know the CA's public key

Exploiting the IP TTL Field

- BGP speakers are usually one hop apart
 - To thwart an attacker, can check that the packets carrying the BGP message have not traveled far
- IP Time-to-Live (TTL) field
 - Decremented once per hop
 - Avoids packets staying in network forever
- Generalized TTL Security Mechanism (RFC 3682)
 - -Send BGP packets with initial TTL of 255
 - Receiving BGP speaker checks that TTL is 254
 - ... and flags and/or discards the packet others
- Hard for third-party to inject packets remotely