Interdomain Routing Security

COS 461: Computer Networks
Jennifer Rexford
Interdomain Routing

- AS-level topology
 - Nodes are Autonomous Systems (ASes)
 - Edges are links and business relationships

Client

Web server
Border Gateway Protocol (BGP)

- **ASes exchange reachability information**
 - Destination: block of addresses (an “IP prefix”)
 - AS path: sequence of ASes along the path

- **Policies configured by network operators**
 - Path selection: which of the paths to use?
 - Path export: which neighbors to tell?
Goals of Today’s Lecture

• BGP security vulnerabilities
 – BGP session
 – Prefix ownership
 – AS-path attribute

• Improving BGP security
 – Protective filtering
 – Cryptographic variant of BGP
 – Anomaly-detection schemes

• Data-plane attacks

• Difficulty of upgrading BGP
BGP Session Security
TCP Connection Underlying BGP Session

- BGP session runs over TCP
 - TCP connection between neighboring routers
 - BGP messages sent over TCP connection
 - Makes BGP vulnerable to attacks on TCP
Attacks on Session Security

- **Confidentiality**
 - Eavesdropping by tapping the link
 - Inferring routing policies and stability

- **Integrity**
 - Tampering by dropping, modifying, or adding packets
 - Changing, filtering, or replaying BGP routes

- **Availability**
 - Resetting the session or congesting the link
 - Disrupting communication and overloading the routers
Defending Session Security is Easy

• BGP routing information is propagated widely
 – Confidentiality isn’t all that important

• Two end-points have a business relationship
 – Use known IP addresses and ports to communicate
 – Can agree to sign and encrypt messages

• Limited physical access to the path
 – Direct physical link, often in same building

• Low volume of special traffic
 – Filter packets from unexpected senders
 – Filter packets that travel more than one hop
 – Can give BGP packets higher priority
Validity of the routing information: Origin authentication
IP Address Ownership and Hijacking

• IP address block assignment
 – Regional Internet Registries (ARIN, RIPE, APNIC)
 – Internet Service Providers

• Proper origination of a prefix into BGP
 – By the AS who owns the prefix
 – … or, by its upstream provider(s) in its behalf

• However, what’s to stop someone else?
 – Prefix hijacking: another AS originates the prefix
 – BGP does not verify that the AS is authorized
 – Registries of prefix ownership are inaccurate
Prefix Hijacking

• Consequences for the affected ASes
 – Blackhole: data traffic is discarded
 – Snooping: data traffic is inspected, and then redirected
 – Impersonation: data traffic is sent to bogus destinations
Hijacking is Hard to Debug

• The victim AS doesn’t see the problem
 – Picks its own route
 – Might not even learn the bogus route

• May not cause loss of connectivity
 – E.g., if the bogus AS snoops and redirects
 – … may only cause performance degradation

• Or, loss of connectivity is isolated
 – E.g., only for sources in parts of the Internet

• Diagnosing prefix hijacking
 – Analyzing updates from many vantage points
 – Launching traceroute from many vantage points
Sub-Prefix Hijacking

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

12.34.158.0/24
12.34.0.0/16
How to Hijack a Prefix

• The hijacking AS has
 – Router with BGP session(s)
 – Configured to originate the prefix

• Getting access to the router
 – Network operator makes configuration mistake
 – Disgruntled operator launches an attack
 – Outsider breaks in to the router and reconfigures

• Getting other ASes to believe bogus route
 – Neighbor ASes do not discard the bogus route
 – E.g., not doing protective filtering
YouTube Outage on Feb 24, 2008

• YouTube (AS 36561)
 – Web site www.youtube.com
 – Address block 208.65.152.0/22

• Pakistan Telecom (AS 17557)
 – Receives government order to block access to YouTube
 – Starts announcing 208.65.153.0/24 to PCCW (AS 3491)
 – All packets directed to YouTube get dropped on the floor

• Mistakes were made
 – AS 17557: announcing to everyone, not just customers
 – AS 3491: not filtering routes announced by AS 17557

• Lasted 100 minutes for some, 2 hours for others
Timeline (UTC Time)

• 18:47:45
 – First evidence of hijacked /24 route propagating in Asia

• 18:48:00
 – Several big trans-Pacific providers carrying the route

• 18:49:30
 – Bogus route fully propagated

• 20:07:25
 – YouTube starts advertising the /24 to attract traffic back

• 20:08:30
 – Many (but not all) providers are using the valid route

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
Timeline (UTC Time)

• 20:18:43
 – YouTube starts announcing two more-specific /25 routes

• 20:19:37
 – Some more providers start using the /25 routes

• 20:50:59
 – AS 17557 starts prepending (“3491 17557 17557”)

• 20:59:39
 – AS 3491 disconnects AS 17557

• 21:00:00
 – All is well, videos of cats flushing toilets are available

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
Another Example: Spammers

- Spammers sending spam
 - Form a (bidirectional) TCP connection to a mail server
 - Send a bunch of spam e-mail
 - Disconnect and laugh all the way to the bank

- But, best not to use your real IP address
 - Relatively easy to trace back to you

- Could hijack someone’s address space
 - But you might not receive all the (TCP) return traffic
 - And the legitimate owner of the address might notice

- How to evade detection
 - Hijack unused (i.e., unallocated) address block in BGP
 - Temporarily use the IP addresses to send your spam
BGP AS Path
Bogus AS Paths

• Remove ASes from the AS path
 – E.g., turn “701 3715 88” into “701 88”

• Motivations
 – Make the AS path look shorter than it is
 – Attract sources that normally try to avoid AS 3715
 – Help AS 88 look like it is closer to the Internet’s core

• Who can tell that this AS path is a lie?
 – Maybe AS 88 *does* connect to AS 701 directly
Bogus AS Paths

• Add ASes to the path
 – E.g., turn “701 88” into “701 3715 88”

• Motivations
 – Trigger loop detection in AS 3715
 • Denial-of-service attack on AS 3715
 • Or, blocking unwanted traffic coming from AS 3715!
 – Make your AS look like it has richer connectivity

• Who can tell the AS path is a lie?
 – AS 3715 could, if it could see the route
 – AS 88 could, but would it really care as long as it received data traffic meant for it?
Bogus AS Paths

• Adds AS hop(s) at the end of the path
 – E.g., turns “701 88” into “701 88 3”

• Motivations
 – Evade detection for a bogus route
 – E.g., by adding the legitimate AS to the end

• Hard to tell that the AS path is bogus…
 – Even if other ASes filter based on prefix ownership
Invalid Paths

• AS exports a route it shouldn’t
 – AS path is a valid sequence, but violated policy

• Example: customer misconfiguration
 – Exports routes from one provider to another

• … interacts with provider policy
 – Provider prefers customer routes
 – … so picks these as the best route

• … leading the dire consequences
 – Directing all Internet traffic through customer

• Main defense
 – Filtering routes based on prefixes and AS path
Missing/Inconsistent Routes

• Peers require consistent export
 – Prefix advertised at all peering points
 – Prefix advertised with same AS path length

• Reasons for violating the policy
 – Trick neighbor into “cold potato”
 – Configuration mistake

• Main defense
 – Analyzing BGP updates
 – … or data traffic
 – … for signs of inconsistency
BGP Security Today

• Applying best common practices (BCPs)
 – Securing the session (authentication, encryption)
 – Filtering routes by prefix and AS path
 – Packet filters to block unexpected control traffic

• This is not good enough
 – Depends on vigilant application of BCPs
 • ... and not making configuration mistakes!
 – Doesn’t address fundamental problems
 • Can’t tell who owns the IP address block
 • Can’t tell if the AS path is bogus or invalid
 • Can’t be sure the data packets follow the chosen route
Proposed Enhancements to BGP
S-BGP Secure Version of BGP

• Address attestations
 – Claim the right to originate a prefix
 – Signed and distributed out-of-band
 – Checked through delegation chain from ICANN

• Route attestations
 – Distributed as an attribute in BGP update message
 – Signed by each AS as route traverses the network
 – Signature signs previously attached signatures

• S-BGP can validate
 – AS path indicates the order ASes were traversed
 – No intermediate ASes were added or removed
S-BGP Deployment Challenges

• Complete, accurate registries
 – E.g., of prefix ownership

• Public Key Infrastructure
 – To know the public key for any given AS

• Cryptographic operations
 – E.g., digital signatures on BGP messages

• Need to perform operations quickly
 – To avoid delaying response to routing changes

• Difficulty of incremental deployment
 – Hard to have a “flag day” to deploy S-BGP
Incrementally Deployable Solutions?

- **Backwards compatible**
 - No changes to router hardware or software
 - No cooperation from other ASes

- **Incentives for early adopters**
 - Security benefits for ASes that deploy the solution
 - … and further incentives for others to deploy

- **What kind of solutions are possible?**
 - Detecting suspicious routes
 - … and then filtering or depreferencing them
Detecting Suspicious Routes

• Monitoring BGP update messages
 – Use past history as an implicit registry

• E.g., AS that announces each address block
 – Prefix 18.0.0.0/8 usually originated by AS 3

• E.g., AS-level edges and paths
 – Never seen the subpath “7018 88 1785”

• Out-of-band detection mechanism
 – Generate reports and alerts
 – Internet Alert Registry: http://iar.cs.unm.edu/
 – Prefix Hijack Alert System: http://phas.netsec.colostate.edu/
Avoiding Suspicious Routes

• **Soft response to suspicious routes**
 – Prefer routes that agree with the past
 – Delay adoption of unfamiliar routes when possible

• **Why is this good enough?**
 – Some attacks will go away on their own
 – Let someone else be the victim instead of you
 – Give network operators time to investigate

• **How well would it work?**
 – If top ~40 largest ASes applied the technique
 – … most other ASes are protected, too
 – … since they mostly learn routes from the big ASes

What About Packet Forwarding?
Control Plane vs. Data Plane

• **Control plane**
 – BGP is a routing protocol
 – BGP security concerns validity of routing messages
 – I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute

• **Data plane**
 – Routers forward data packets
 – Supposedly along the path chosen in the control plane
 – But what ensures that this is true?
Data-Plane Attacks, Part 1

• Drop packets in the data plane
 – While still sending the routing announcements

• Easier to evade detection
 – Especially if you only drop some packets
 – Like, oh, say, BitTorrent or Skype traffic

• Even easier if you just slow down some traffic
 – How different are normal congestion and an attack?
 – Especially if you let ping/traceroute packets through?
Data-Plane Attacks, Part 2

- Send packets in a different direction
 - Disagreeing with the routing announcements

- Direct packets to a different destination
 - E.g., one the adversary controls

- What to do at that bogus destination?
 - Impersonate the legitimate destination (e.g., to perform identity theft, or promulgate false information)
 - Snoop on the traffic and forward along to real destination

- How to detect?
 - Traceroute? Longer than usual delays?
 - End-to-end checks, like site certificate or encryption?
Fortunately, Data-Plane Attacks are Harder

• Adversary must control a router along the path
 – So that the traffic flows through him

• How to get control a router
 – Buy access to a compromised router online
 – Guess the password
 – Exploit known router vulnerabilities
 – Insider attack (disgruntled network operator)

• Malice vs. greed
 – Malice: gain control of someone else’s router
 – Greed: Verizon DSL blocks Skype to gently encourage me to pick up my landline phone to use Verizon long distance service 😊
What’s the Internet to Do?
BGP is So Vulnerable

• Several high-profile outages
 – http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 – http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
 – http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
 – http://www.theregister.co.uk/2010/04/09/china_bgp_interweb_snafu/

• Many smaller examples
 – Blackholing a single destination prefix
 – Hijacking unallocated addresses to send spam

• Why isn’t it an even bigger deal?
 – Really, most big outages are configuration errors
 – Most bad guys want the Internet to stay up
 – … so they can send unwanted traffic
BGP is So Hard to Fix

• Complex system
 – Large, with around 40,000 ASes
 – Decentralized control among competitive ASes
 – Core infrastructure that forms the Internet

• Hard to reach agreement on the right solution
 – S-BGP with public key infrastructure, registries, crypto?
 – Who should be in charge of running PKI and registries?
 – Worry about data-plane attacks or just control plane?

• Hard to deploy the solution once you pick it
 – Hard enough to get ASes to apply route filters
 – Now you want them to upgrade to a new protocol
 – … all at the exact same moment?
Conclusions

• Internet protocols designed based on trust
 – The insiders are good guys
 – All bad guys are outside the network

• Border Gateway Protocol is very vulnerable
 – Glue that holds the Internet together
 – Hard for an AS to locally identify bogus routes
 – Attacks can have very serious global consequences

• Proposed solutions/approaches
 – Secure variants of the Border Gateway Protocol
 – Anomaly detection schemes, with automated response
 – Broader focus on data-plane availability
Backup Slides
Encrypting and Decrypting With Keys

• Encrypt to hide message contents
 – Transforming message contents with a key
 – Message cannot be read without the right key

• Symmetric key cryptography
 – Same secret key for encrypting and decrypting
 – … makes it hard to distribute the secret key

• Asymmetrical (or public key) cryptography
 – Sender uses public key to encrypt message
 • Can be distributed freely!
 – Receiver uses private key to decrypt message
Authenticating the Sender and Contents

• Digital signature for authentication
 – Data attached to the original message
 • … to identify sender and detect tampering
 – Sender encrypts message digest with private key
 – Receiver decrypts message digest with public key
 • … and compares with message digest it computes

• Certificate
 – Collection of information about a person or thing
 • … with a digital signature attached
 – A trusted third party attaches the signature
Public Key Infrastructure (PKI)

- **Problem: getting the right key**
 - How do you find out someone’s public key?
 - How do you know it isn’t someone else’s key?

- **Certificate Authority (CA)**
 - Bob takes public key and identifies himself to CA
 - CA signs Bob’s public key with digital signature to create a certificate
 - Alice can get Bob’s key and verify the certificate with the CA

- **Register once, communicate everywhere**
 - Each user only has the CA certify his key
 - Each user only needs to know the CA’s public key
Exploiting the IP TTL Field

• BGP speakers are usually one hop apart
 – To thwart an attacker, can check that the packets carrying the BGP message have not traveled far

• IP Time-to-Live (TTL) field
 – Decremented once per hop
 – Avoids packets staying in network forever

• Generalized TTL Security Mechanism (RFC 3682)
 – Send BGP packets with initial TTL of 255
 – Receiving BGP speaker checks that TTL is 254
 – … and flags and/or discards the packet others

• Hard for third-party to inject packets remotely