

Network and Communication Security

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in COS 105)

Mike Freedman

http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Overview

- Network security and definitions
- Brief introduction to cryptography
 - Cryptographic hash hunctions
 - Symmetric-key crypto
 - Public-key crypto
- IP-Sec
- DNS-Sec

Internet's Design: Insecure

- Designed for simplicity
- "On by default" design
- Readily available zombie machines
- Attacks look like normal traffic
- Internet's federated operation obstructs cooperation for diagnosis/mitigation

Basic Components

- Confidentiality: concealment of information or resources
- Authenticity: identification and assurance of the origin of info
- Integrity: the trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability the ability to use the info or resource desired
- Non-repudiation: offer of evidence that a party indeed is the sender or a receiver of certain information
- Access control: facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Eavesdropping - Message Interception (Attack on Confidentiality)

- Unauthorized access to information
- Packet sniffers and wiretappers
- Illicit copying of files and programs

Eavesdropping Attack: Example

- tcpdump with promiscuous network interface
 - On a switched network, what can you see?
- What might the following traffic types reveal about communications?
 - DNS lookups (and replies)
 - IP packets without payloads (headers only)
 - Payloads

Integrity Attack - Tampering

- Stop the flow of the message
- Delay and optionally modify the message
- Release the message again

Authenticity Attack - Fabrication

- Unauthorized assumption of other's identity
- Generate and distribute objects under this identity

Attack on Availability

- Destroy hardware (cutting fiber) or software
- Modify software in a subtle way
- Corrupt packets in transit

- Blatant denial of service (DoS):
 - Crashing the server
 - Overwhelm the server (use up its resource)

Impact of Attacks

- Theft of confidential information
- Unauthorized use of
 - Network bandwidth
 - Computing resource
- Spread of false information
- Disruption of legitimate services

All attacks can be related and are dangerous!

Introduction to Cryptography

What is Cryptography?

- Comes from Greek word meaning "secret"
 - Primitives also can provide integrity, authentication
- Cryptographers invent secret codes to attempt to hide messages from unauthorized observers

- Modern encryption:
 - Algorithm is public, key is secret and provides security
 - May be symmetric (secret) or asymmetric (public)

Cryptographic Algorithms: Goal

Given key, relatively easy to compute

Without key, hard to compute (invert)

"Level" of security often based on "length" of key

Three Types of Functions

- Cryptographic hash Functions
 - Zero keys

- Secret-key functions
 - One key

- Public-key functions
 - Two keys

Cryptographic hash functions

Cryptography Hash Functions

 Take message, m, of arbitrary length and produces a smaller (short) number, h(m)

Properties

- Easy to compute h(m)
- Pre-image resistance: Hard to find an m, given h(m)
 - "One-way function"
- Second pre-image resistance: Hard to find two values that hash to the same h(m)
 - E.g. discover collision: h(m) == h(m') for m != m'
- Often assumed: output of hash fn's "looks" random

How hard to find collisions? Birthday Paradox

- Compute probability of different birthdays
- Random sample of n people taken from k=365 days
- Probability of no repetition:

$$-P = 1 - (1)(1 - 1/365)(1 - 2/365)(1 - 3/365) ... (1 - (n-1)/365)$$

$$-P^{-1}-e^{-(n(n-1)/2k)}$$

- Let k=n, $P \sim 2^N/2$

How Many Bits for Hash?

- If m bits, takes $2^{m/2}$ to find weak collision
 - Still takes 2^m to find strong (pre-image) collision

• 64 bits, takes 2³² messages to search (easy!)

- Now, MD5 (128 bits) considered too little
- SHA-1 (160 bits) getting old

Example use

Password hashing

- Can't store passwords in a file that could be read
 - Concerned with insider attacks!
- Must compare typed passwords to stored passwords
 - Does hash (typed) == hash (password) ?
- Actually, a "salt" is often used: hash (input | | salt)
- File-sharing software (Freenet, BitTorrent)
 - File named by F_{name} = hash (data)
 - Participants verify that hash (downloaded) == F_{name}

Example use #2: TCP SYN cookies

General idea

- Client sends SYN w/ ACK number
- Server responds to Client with SYN-ACK cookie
 - sqn = f (time, rand nonce, src ip, src port, dest ip, dest port)
 - Server does not save state
- Honest client responds with ACK (sqn)
- Server checks response
- If matches SYN-ACK, establishes connection
- Prevents resource-exhausting attack by clients

Example use #2: TCP SYN cookies

- TCP SYN/ACK seqno encodes a cookie
 - 32-bit sequence number
 - t mod 32: counter to ensure sequence numbers increase every 64 seconds (t = time() >> 6)
 - MSS: encoding of server MSS (can only have 8 settings)
 - Cookie: easy to create and validate, hard to forge
 - Includes timestamp, nonce, 4-tuple

Symmetric (Secret) Key Cryptography

Symmetric Encryption

- Also: "conventional / private-key / single-key"
 - Sender and recipient share a common key
 - All classical encryption algorithms are private-key

- Was only type of encryption prior to invention of public-key in 1970's
 - And by far most widely used
 - Typically more computationally efficient

Symmetric Cipher Model

Requirements

- Two requirements
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- Mathematically:

$$Y = E_{\kappa}(X)$$
 ; $X = D_{\kappa}(Y)$

- Goal: Given key, generate a 1-to-1 mapping to ciphertext that looks random if key unknown
- Assume encryption algorithm is known
- Implies a secure channel to distribute key

Public-Key Cryptography

Why Public-Key Cryptography?

- Developed to address two key issues:
 - Key distribution how to secure communication without having to trust a key distribution center with your key
 - Digital signatures how to verify msg comes intact from claimed sender (w/o prior establishment)
- Public invention due to Whitfield Diffie & Martin Hellman in 1976
 - known earlier in classified community

Public-Key Cryptography

- Public-key/two-key/asymmetric cryptography involves the use of two keys:
 - A public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - A private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures

• Is **asymmetric** because

- Those who encrypt messages or verify signatures cannot decrypt messages or create signatures
- If "one-way function" goes c ← F(m), then public-key encryption is a "trap-door" function:
 - Easy to compute $c \leftarrow F(m)$
 - Hard to compute $m \leftarrow F^{-1}(m)$ without knowing k
 - Easy to compute $m \leftarrow F^{-1}(m,k)$ by knowing k

Public-Key Cryptography

Security of Public Key Schemes

- Like private key schemes brute force exhaustive search attack is always theoretically possible
 - But keys used are too large (e.g., >= 1024bits)
- Security relies on a large enough difference in difficulty between easy (compute) and hard (invert without trapdoor) problems
 - More generally the hard problem is known, but is made hard enough to be impractical to break
- Requires the use of very large numbers
 - Hence is **slow** compared to private key schemes
 - RSA-1024: 80 us / encryption; 1460 us / decryption [cryptopp.com]
 - AES-128: 109 MB / sec = 1.2us / 1024 bits

RSA Algorithm

- Security due to cost of factoring large numbers
 - Factorization takes O(e log n log log n) operations (hard)
 - Exponentiation takes $O((log n)^3)$ operations (easy)
- To encrypt a message M the sender:
 - Obtain public key $\{e, n\}$; compute $C = M^e \mod n$
- To decrypt the ciphertext C the owner:
 - Use private key $\{d, n\}$; computes $M = C^d \mod n$
- Note that msg M must be smaller than the modulus n
 - Otherwise, hybrid encryption:
 - Generate random symmetric key r
 - Use public key encryption to encrypt r
 - Use symmetric key encryption under r to encrypt M

IP Security

IP Security

- There is range of app-specific security mechanisms
 - eg. S/MIME, PGP, Kerberos, SSL/HTTPS
- However there are security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security mechanisms
- Provides
 - authentication
 - confidentiality
 - key management
- Applicable to use over LANs, across public & private WANs, and for the Internet

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass
- Below transport layer: transparent to applications
- Can be transparent to end users
- Can provide security for individual users
- Helps secure routing architecture

IP Security Architecture

- Specification is quite complex
 - Multiple RFC's (incl. RFC 2401 / 2402 / 2406 / 2408)
 - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - Some protection against replay attacks
 - Partial sequence integrity via sliding window on seq #'s
 - Not as robust as if on top of TCP
 - MAC over most header fields and packet body
 - Encapsulating Security Payload (ESP)

Encapsulating Security Payload (ESP)

- Connection integrity, (optional) anti-replay
- (Optional) origin authentication
- Encryption
 - Transport mode: Data protected, but header in clear
 - Can do traffic analysis but is efficient
 - Good for host-to-host traffic
 - Tunnel mode: Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

DNS Security

Root level DNS attacks

- Feb. 6, 2007:
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

Do you trust the TLD operators?

- Wildcard DNS record for all <u>.com</u> and <u>.net</u>
 domain names not yet registered by others
 - September 15 October 4, 2003
 - February 2004: Verisign sues ICANN
- Redirection for these domain names to Verisign web portal: "to help you search"
 - and serve you ads...and get "sponsored" search

Defense: Replication and Caching

Letter	Old name	Operator	Location
A	ns.internic.net	VeriSign	Dulles, Virginia, USA
В	ns1.isi.edu	ISI	Marina Del Rey, California, USA
С	c.psi.net	Cogent Communications	distributed using anycast
D	terp.umd.edu	University of Maryland	College Park, Maryland, USA
E	ns.nasa.gov	NASA	Mountain View, California, USA
F	ns.isc.org	ISC	distributed using anycast
G	ns.nic.ddn.mil	U.S. DoD NIC	Columbus, Ohio, USA
н	aos.arl.army.mil	U.S. Army Research Lab	Aberdeen Proving Ground, Maryland, USA
ı	nic.nordu.net	Autonomica &	distributed using anycast
J		VeriSign	distributed using anycast
K		RIPE NCC	distributed using anycast
L		ICANN	Los Angeles, California, USA
М		WIDE Project	distributed using anycast

source: wikipedia

DNS Amplification Attack

DNS Amplification attack: (×40 amplification)

580,000 open resolvers on Internet (Kaminsky-Shiffman'06)

Solutions

But should we believe it? Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity

PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
- Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of nameserver's public keys is established by a signature over the keys by the parent's private key
 - In ideal case, only roots' public keys need to be distributed out-of-band

Verifying the tree

Question: www.cnn.com ?

Summary

- Network security and definitions
- Introduction to cryptography
 - Cryptographic hash functions:
 - Zero keys, hard to invert, hard to find collisions
 - Symmetric-key crypto
 - One key, hard to invert, requires key distribution
 - Public-key crypto
 - Two keys, hard to invert, more expensive
- Application to crypto to help secure IP communication and DNS lookup