%I\' Lee Lorenz, Brent Sheppard

Jenkins, if | want another yes-man, I’ll build one!

Versioning, Consistency, and Agreement

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in CS105)

Mike Freedman
http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Time and distributed systems

* With multiple events, what happens first?

A shoots B

B dies

Time and distributed systems

* With multiple events, what happens first?

B shoots A

A dies

Time and distributed systems

* With multiple events, what happens first?

A shoots B B shoots A

A dies B dies

Just use time stamps?

* Need synchronized clocks

* Clock synch via a time server

O

P Time server S

Cristian’s Algorithm

e Uses a time server to synchronize clocks
 Time server keeps the reference time

e Clients ask server for time and adjust their local
clock, based on the response

— But different network latency — clock skew?

e Correct for this? For links with symmetrical latency:

RTT = response-received-time - request-sent-time

adjusted-local-time = server-timestamp t + (RTT / 2)

local-clock-error = adjusted-local-time - local-time

Is this sufficient?

Server latency due to load?
— If can measure:

 adjusted-local-time = server-time t + (RTT+ lag) / 2
But what about asymmetric latency?
— RTT / 2 not sufficient!

What do we need to measure RTT?
— Requires no clock drift!

What about “almost” concurrent events?
— Clocks have micro/milli-second precision

Events and Histories

* Processes execute sequences of events

* Events can be of 3 types:

— local, send, and receive

* The local history h of process p is the
sequence of events executed by process

Ordering events

* Observation 1:
— Events in a local history are totally ordered

. O OO O O O O O O O O PN
i A4 A4 A4 A4 A4 A4 A4 A4 A4 A4

time

Ordering events

* Observation 1:

— Events in a local history are totally ordered

Pi

* Observation 2:
— For every message m, send(m)

Pi

)\
A4

o\
A

o\
A

)\
A4

)\
A4

)\
A4

)\
A4

)\
A4

)\
A4

O PN
A4

)\
A4

)\
A4

o\
A

)\
A4

)\
A4

)\
A4

)\
A4

Y
A

)\
A4

time

precedes receive(m)

O PN
A4

@)

@)

@)

@)

@)

@)

m

time

time

@)

O

@)

@)
J

Happens-Before (Lamport [1978])

* Relative time? Define Happens-Before (—) :
On the same process: a — b, if time(a) < time(b)
If p1 sends m to p2: send(m) — receive(m)

fa —band b —cthen a —=c¢

 Lamport Algorithm uses for partial ordering:
All processes use a counter (clock) with initial value of O

Counter incremented by and assighed to each event, as
its timestamp

A send (msg) event carries its timestamp

For receive (msg) event, counter is updated by Max
(receiver-counter, message-timestamp) + 1

Events Occurring at Three Processes

P+ @ @ >

P, ® » Physical
time
C (\

P3 ® o >

Lamport Timestamps

P+

P2

» Physical

P3 ® ®

time

Lamport Logical Time

Physical Time

Y

0 1 2 3 4

Host 1
1 3 4
Host 2 ° 2 5
. 3 3
Host 3 ©
3 5

Host 4 o 4

14

Lamport Logical Time

Physical Time

Y

0 1 2 3 4

Host 1

Host 2 ° >

Host 3 ©

Host 4 o 4

Logically concurrent events!

Vector Logical Clocks

 With Lamport Logical Time
— e precedes f = timestamp(e) < timestamp (f), but
— timestamp(e) < timestamp (f) = e pr es f

Vector Logical Clocks

 With Lamport Logical Time
— e precedes f = timestamp(e) < timestamp (f), but
— timestamp(e) < timestamp (f) = e pr es f

* V\ector Logical time guarantees this:
— All hosts use a vector of counters (logical clocks),
ith element is the clock value for host i, initially O

— Each host i, increments the ith element of its vector upon an
event, assigns the vector to the event.

— A send(msg) event carries vector timestamp
— For receive(msg) event,

Vieceiver] +1 otherwise

_ Max (Vieceiverli] » Vinsglil), if jis not self
Vreceiver[.l] =

Vector Timestamps

P1

P2

P3

(1,0,0) (2,0,0)

. _
a b m
(21,00 (22,0 - Physical
. : o time
(0,0,1) (2,2,2)
. _

o f

Vector Logical Time

Physical Time

S
—_—

1,0,0,0 2,0,0,0
Host 1
1,0,0,0
1,2,0,0

Host 2 1.1,0,0

1,2)0,0

2,0,2,0

Host 3 2,0,1,0 . 2,2,3,0
Host 4

2,0,2,1

_ Max (Vi ceiverlil » Vinselil), if j is not self
Vreceiver['] = V

]+1 otherwise

receiver[j

Comparing Vector Timestamps

a=b ifthey agree at every element

a<b ifali] <=bli] for everyi, but !(a = b)

a>b if a[i] >=Dbli] for every i, but !(a = b)

allb ifa[i] <Dbl[i], a[j] > blj], for somei,j (conflict!)

If one history is prefix of other, then one vector
timestamp < other

If one history is not a prefix of the other, then (at
least by example) VTs will not be comparable.

Given a notion of time...

...What’s a notion of consistency?

21

Strict Consistency

Strongest consistency model we’ll consider

— Any read on a data item X returns value
corresponding to result of the most recent write on X

Need an absolute global time
— “Most recent” needs to be unambiguous

Write x to a
/ Read x returns a
P1: W(x)a \l'
P2: RXNIL R{x)a

(b)

X

What else can we do?

e Strict consistency is the ideal model
— But impossible to implement!

e Sequential consistency
— Slightly weaker than strict consistency
— Defined for shared memory for multi-processors

Sequential Consistency

e Definition:
Result of any execution is the same as if all (read and write)
operations on data store were executed in some sequential order,

and the operations of each individual process appear in this
sequence in the order specified by its program

* Definition: When processes are running concurrently:

— Interleaving of read and write operations is acceptable, but all
processes see the same interleaving of operations

e Difference from strict consistency
— No reference to the most recent time
— Absolute global time does not play a role

Valid Sequential Consistency?

P1. W(X)a

P2: Wb

P3: R{x)b R(x)a
P4 R(x)b R(x)a

(a)

P1: W(x)a

P2: Wb

P3: Rx)b R(x)a
P4: Rx)a R(x)b

(b)

X

25

Linearizability

* Linearizability
— Weaker than strict consistency
— Stronger than sequential consistency

e All operations (OP = read, write) receive a global
time-stamp using a synchronized clock

* Linearizability:
— Requirements for sequential consistency, plus

— If ts,1(x) < ts,,(y), then OP1(x) should precede OP2(y)
in the sequence

Causal Consistency

* Necessary condition:

— Writes that are potentially causally related must be
seen by all processes in the same order.

— Concurrent writes may be seen in a different order
on different machines.

 Weaker than sequential consistency

* Concurrent: Ops that are not causally related

Causal Consistency

P1: W(x)a W(x)c

P2: R()a W0 b

P3: R()a R{x)c R()b
P4. R()a R()b R(x)c

* Allowed with causal consistency, but not with
sequential or strict consistency

 W(x)b and W(x)c are concurrent

— So all processes don’t see them in the same order

 P3 and P4 read the values ‘@’ and ‘b’ in order as
potentially causally related. No ‘causality’ for ‘c’.

Causal Consistency

P1: W()a

P2: R{x)a Wb

P3: R(x)b R{X)a
P4: R(xX)a R{X)b

()

P1: W(x)a

P2: W(x)b

P3: R(xX)b R{X)a
P4: R(x)a R{&)b

(b)

29

Causal Consistency

* Requires keeping track of which processes
have seen which writes

— Needs a dependency graph of which op is
dependent on which other ops

— ...or use vector timestamps!

Eventual consistency

If no new updates are made to an object, after
some inconsistency window closes, all accesses will
return the last updated value

Prefix property:
— If Pi has write w accepted from some client by Pj
— Then Pi has all writes accepted by Pj prior to w

Useful where concurrency appears only in a
restricted form

Assumption: write conflicts will be easy to resolve
— Even easier if whole-"object” updates only

Systems using eventual consistency

 DB: updated by a few proc’s, read by many

— How fast must updates be propagated?

 Web pages: typically updated by single user
— So, no write-write conflicts

— However caches can become inconsistent

Systems using eventual consistency

 DNS: each domain assigned to a naming authority

— Only master authority can update the name space

— Other NS servers act as “slave” servers, downloading DNS
zone file from master authority

— So, write-write conflicts won’t happen

S ORIGIN coralcdn.org.
@ IN SOA ns3.fs.net. hostmaster.scs.cs.nyu.edu. (

18 : serial

1200 ; refresh

600 ; retry

172800 ; expire

21600) ; minimum

— Is this always true today?

Typical implementation of eventual
consistency

e Distributed, inconsistent state

— Writes only go to some subset of storage nodes
* By design (for higher throughput)
* Due to transmission failures

* “Anti-entropy” (gossiping) fixes inconsistencies
— Use vector clock to see which is older
— Prefix property helps nodes know consistency status
— If automatic, requires some way to handle write conflicts
» Application-specific merge() function

 Amazon’s Dynamo: Users may see multiple concurrent
“branches” before app-specific reconciliation kicks in

Examples...

Causal consistency. Non-causally related subject to
normal eventual consistency rules

Read-your-writes consistency.

Session consistency. Read-your-writes holds iff client
session exists. If session terminates, no guarantees
between sessions.

Monotonic read consistency. Once read returns a
version, subsequent reads never return older versions.

Monotonic write consistency. Writes by same
process are properly serialized. Really hard to
program systems without this process.

Even read-your-writes may be difficult
to achieve

Client moves to other location
and (transparently) connects to

other replica
— L
BN

8 Replicas heed to maintain

client-centric consistency

Distributed and replicated database

7‘ Read and write operations
Portable computer

What about stronger agreement?

* Two-phase commit protocol

* Marriage ceremony Do you?
| do.

| now pronounce you...

° Theater Ready on the Set?
Ready!
Action!

Offer

Signature
Deal / lawsuit

e Contract law

What about stronger agreement?

* Two-phase commit protocol

w | WRITE> . PREPARE §>

READY

& 2
All prepared? COMMIT
i
ACK
All ack’d? <4/ ¥

ACK

Acceptors

38

What about failures?

* |f an acceptor fails:
— Can still ensure linearizability if |[R| + |[W| =N

— “read” and “write” quorums overlap in at least 1 node

* |f the leader fails?
— Lose availability: system not longer “live”

* Pick a new leader?

— Need to make sure everybody agrees on leader!
— Need to make sure that “group” is known

Consensus and Paxos Algorithm

* “Consensus” problem
— N processes want to dagree on a value

— If fewer than F faults in a window, consensus achieved
e “Crash” faults need 2F+1 processes
* “Malicious” faults (called Byzantine) need 3F+1 processes

e Collection of processes proposing values
— Only proposed value may be chosen

— Only single value chosen

* Common usage:
— View change: define leader and group via Paxos
— Leader uses two-phase commit for writes

— Acceptors monitor leader for liveness. If detect failure, re-
execute “view change”

Paxos: Algorithm

View Change from current view
View i: V ={Leader: N2, Group: {N1, N2, N3} }
Phase 1 (Prepare)

* Proposer: Send prepare with version#; to members of View i

* Acceptor: ifj >vers # k of any other prepare it seen, respond with
promise not to accept lower-numbered proposals. Otherwise,
respond with k and value v’ accepted.

Phase 2 (Accept)

* |f majority promise, proposer sends accept with (vers j, value v)

* Acceptor accepts unless it has responded to prepare with higher
vers # than j. Sends acknowledgement to all view members.

Summary

Global time doesn’t exist in distributed system
Logical time can be established via version #'s

Logical time useful in various consistency models
— Strict > Linearizability > Sequential > Causal > Eventual

Agreement in distributed system
— Eventual consistency: Quorums + anti-entropy
— Linearizability: Two-phase commit, Paxos

