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Overlay Networks

* P2P applications need to:

— Track identities & (IP) addresses of peers

* May be many and may have significant churn
e Best not to have n? ID references

)

—Thus, nodes’ “views” << view in consistent hashing

— Route messages among peers
* If you don’t keep track of all peers, this is “multi-hop”

* Overlay network

— Peers doing both naming and routing

— I[P becomes “just” the low-level transport
e All the IP routing is opaque

e Assumption that network is fully-connected (< true?)
(Many slides borrowed from Joe Hellerstein’s VLDB 04 keynote)



Many New Challenges

* Relative to other parallel/distributed systems
— Partial failure
— Churn
— Few guarantees on transport, storage, etc.
— Huge optimization space
— Network bottlenecks & other resource constraints
— No administrative organizations
— Trust issues: security, privacy, incentives

* Relative to IP networking
— Much higher function, more flexible
— Much less controllable/predictable



Early P2P



Early P2P I: Client-Server
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Early P2P I: Client-Server

Napster
— Client-search search
— “P2P” file xfer [ ]

—
|:| 4
—
Xyz.mp3
] _J —
= ——+ [ ] 7xyz.mp3 ?
—
- _
] =7




i —h
Intian] : ﬂ
e —"

[
[
[
[
[
[
[
[
[
[
[
[
[

t-Server -

len

Cli

Early P2P |
— Client-search search

* Napster

]
=

— “P2P” file xfer

— | | Xxyz.mp3?




Early P2P Il: Flooding on Overlays
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Early P2P Il: Flooding on Overlays
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Early P2P Il: Flooding on Overlays
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Early P2P Il: Flooding on Overlays




Early P2P Il.v: “Ultra/super peers”

e Ultra-peers can be installed (KaZaA) or self-
promoted (Gnutella)
— Also useful for NAT circumvention, e.g., in Skype




Hierarchical Networks (& Queries)

e |P
— Hierarchical name space
— Hierarchical routing: AS’s corr. with name space (not perfectly)

* DNS

— Hierarchical name space (“clients” + hierarchy of servers)
— Hierarchical routing w/aggressive caching

* Traditional pros/cons of hierarchical mgmt
— Works well for things aligned with the hierarchy
* E.g., physical or administrative locality

— Inflexible
* No data independence!



Lessons and Limitations

e Client-Server performs well
— But not always feasible: Performance not often key issue!

* Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

* Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.
— Guarantees about anything (answer quality, privacy, etc.)



Structured Overlays:
Distributed Hash Tables



DHT Qutline

High-level overview

Fundamentals of structured network topologies
— And examples

One concrete DHT
— Chord

Some systems issues

— Heterogeneity

— Storage models & soft state
— Locality

— Churn management

— Underlay network issues



High-Level Idea: Indirection

* |Indirection in space
— Logical (content-based) IDs, routing to those IDs
e “Content-addressable” network

— Tolerant of churn
* nodes joining and leaving the network




High-Level Idea: Indirection

* |Indirection in space
— Logical (content-based) IDs, routing to those IDs
e “Content-addressable” network

— Tolerant of churn
* nodes joining and leaving the network

* |Indirection in time
— Temporally decouple send and receive

— Persistence required. Hence, typical sol’'n: soft state
 Combo of persistence via storage and via retry 3

— “Publisher” requests TTL on storage ] 9
— Republishes as needed %t-

 Metaphor: Distributed Hash Table



What is a DHT?

e Hash Table

— Data structure that maps “keys” to “values”
— Essential building block in software systems

* Distributed Hash Table (DHT)
— Similar, but spread across the Internet

* |Interface
— insert (key, value) or put (key, value)
— lookup (key) or get (key)



How?

Every DHT node supports a single operation:

— Given key as input; route messages toward
node holding key



DHT in action
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DHT in action
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DHT in action: put()
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DHT in action: put()
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DHT in action: put()
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DHT in action: get()
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Operation: take key as input; route msgs to node holding key



Iterative vs. Recursive Routing

Previously showed recursive.

Another option: iterative £ KV
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Operation: take key as input; route msgs to node holding key



DHT Desigh Goals

* An “overlay” network with:
— Flexible mapping of keys to physical nodes
— Small network diameter
— Small degree (fanout)
— Local routing decisions
— Robustness to churn
— Routing flexibility
— Decent locality (low “stretch”)
e Different “storage” mechanisms considered:
— Persistence w/ additional mechanisms for fault recovery
— Best effort caching and maintenance via soft state



DHT Qutline

High-level overview

Fundamentals of structured network topologies
— And examples

One concrete DHT
— Chord

Some systems issues

— Heterogeneity

— Storage models & soft state
— Locality

— Churn management

— Underlay network issues



An Example DHT: Chord

e Assume n = 2" nodes for a moment
— A “complete” Chord ring

— We’'ll generalize shortly ‘ ‘ ‘ .




An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors
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An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors




An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors
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Cayley Graphs

 The Cayley Graph (S, E) of a group:
— Vertices corresponding to the underlying set S
— Edges corresponding to the actions of the generators

* (Complete) Chord is a Cayley graph for (Z,,+) NIV
— S=Zmod n (n = 2%, ’
— Generators {1, 2, 4, ..., 21}
— That’s what the polygons are all about!

e Fact: Most (complete) DHTs are Cayley graphs

— And they didn’t even know it!
— Follows from parallel InterConnect Networks (ICNs)



How Hairy met Cayley

What do you want in a structured network?
— Uniformity of routing logic

G

/
R ,
— Efficiency/load-balance of routing and malntenance ‘?14,,9
. . WIS T )
— Generality at different scales R

Theorem: All Cayley graphs are vertex symmetric.
— l.e. isomorphic under swaps of nodes

— So routing from y to x looks just like routing from (y-x) to 0
* The routing code at each node is the same

* Moreover, under a random workload the routing responsibilities
(congestion) at each node are the same!

Cayley graphs tend to have good degree/diameter tradeoffs
— Efficient routing with few neighbors to maintain
Many Cayley graphs are hierarchical

— Made of smaller Cayley graphs connected by a new generator

* E.g. a Chord graph on 2™*1 nodes looks like 2 interleaved (half-notch
rotated) Chord graphs of 2™ nodes with half-notch edges



Pastry/Bamboo

Based on Plaxton Mesh @ @
Names are fixed bit strings @ @

Topology: Prefix Hypercube
— For each bit from left to right,
pick neighbor ID with common

flipped bit and common prefix
— log n degree & diameter

Plus a ring
— For reliability (with k pred/succ)

Suffix Routing from A to B

— “Fix” bits from left to right
— E.g. 1010to 0001: 1010 - 0101 - 0010 - 0000 - 0001




CAN: Content Addressable Network
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= Exploit multiple dimensions

= Each node is assigned a zone

1,0.5)

(1,0)

Nodes ID’d by zone boundaries

= Join: chose random point,

split its zones



Routing in 2-dimensions

(0,1)
(0.5,0.5, 1, 1)
(0,0.5,0.5, 1)
(0.5,0.25} 0.75, 0.5)
o//' \\.
(0,0, 0.5, 0.5) (0.75,0,1, 0.5)
(0,0) (1,0)

e Routing is navigating a d-dimensional ID space
— Route to closest neighbor in direction of destination
— Routing table contains O(d) neighbors

* Number of hops is O(dN/d)



Koorde

* DeBruijn graphs
— Link from node x to nodes
2x and 2x+1
— Degree 2, diameter log n
e Optimal!
e Koorde is Chord-based

— Basically Chord, but with
DeBruijn fingers




Topologies of Other Oft-cited DHTs

Tapestry

— Very similar to Pastry/Bamboo topology
— Noring

Kademlia

— Also similar to Pastry/Bamboo

— But the “ring” is ordered by the XOR metric: “bidirectional”
— Used by the eMule / BitTorrent / Azureus (Vuze) systems

Viceroy
— An emulated Butterfly network
Symphony

— A randomized “small-world” network



Incomplete Graphs: Emulation

* For Chord, we assumed exactly 2™

nodes. What if not? () ©
— Need to “emulate” a complete graph
even when incomplete. @ @
 DHT-specific schemes used ® ®
— In Chord, node x is responsible for the @

range (pred(x), x]

— The “holes” on the ring should be @
randomly distributed due to hashing



Handle node heterogeneity

e Sources of unbalanced load o
— Unequal portion of keyspace @

* Balancing keyspace © ©

— Consistent hashing: Region owned @ @
by single node is O(1/n (1 + log n)) @

— Unequal load per key

— What about node hetergeneity?
* Nodes create “virtual nodes” of # @

proportional to capacity

* Load per key

— Assumes many keys per region



Chord in Flux

Essentially never a
“complete” graph

— Maintain a “ring” of ~
successor nodes

— For redundancy, point to k /E;

for IDs at powers of 2
e Called “fingers” in Chord
* 1st finger is the successor =~ T

SUCCEeSSOrs L
— Point to nodes responsible =




Joining the Chord Ring .

e Need IP of some node
e Pickarandom ID
— e.g. SHA-1(IP)

 Send msg to current
owner of that ID P

— That’s your successor in
Chord routing

:
\

Z—’\B -




Joining the Chord Ring

Update pred/succ links

— Oncering is in place, all well!

Inform application to move
data appropriately

Search to find “fingers” of 2,

varying powers of 2 L
— Or just copy from pred /succ =
and check! o e
Inbound fingers fixed lazily \D =
==~ -/

Theorem: If consistency is reached before
network doubles, lookups remain log n




Average lookup latency (msec)
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Handling Churn

 Churn
— Session time? Life time?
* For system resilience, session time is what matters

e Three main issues

— Determining timeouts
 Significant component of lookup latency under churn

— Recovering from a lost neighbor in “leaf set”
* Periodic, not reactive!

* Reactive causes feedback cycles
— Esp. when a neighbor is stressed and timing in and out

— Neighbor selection again



Timeouts

* Recall Iterative vs. Recursive Routing
— |terative: Originator requests IP address of each hop
— Recursive: Message transferred hop-by-hop

e Effect on timeout mechanism

— Need to track latency of communication channels

— Iterative results in direct nxn communication

* Can’t keep timeout stats at that scale
* Solution: virtual coordinate schemes [Vivaldi, etc.]

— With recursive can do TCP-like tracking of latency
* Exponentially weighted mean and variance
* Upshot: Both work OK up to a point

— TCP-style does somewhat better than virtual coords at
modest churn rates (23 min. or more mean session time)

— Virtual coords begins to fail at higher churn rates



Cumulative probability

Recursive vs. lterative
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Left: Simulation of 20,000 |lkps for random keys
Recursive lookup takes 0.6 times as long as iterative

Right Figure: 1,000 lookups in test-bed; confirms simulation



Recursive vs. lterative

e Recursive

— Faster under many conditions
* Fewer round-trip-times
* Better proximity neighbor selection
e Can timeout individual RPCs more tightly

— Better tolerance to network failure
* Path between neighbors already known

* |terative

— Tighter control over entire lookup
 Easily support windowed RPCs for parallelism
e Easier to timeout entire lookup as failed

— Faster to return data directly than use recursive path



Storage Models for DHTs

* Up to now we focused on routing
— DHTs as “content-addressable network”

* Implicit in “DHT” name is some kind of storage
— Or perhaps a better word is “memory”

— Enables indirection in time
— But also can be viewed as a place to store things

3



Storage models

* Store only on key’s immediate successor

— Churn, routing issues, packet loss make lookup
failure more likely

e Store on k successors

— When nodes detect succ/pred fail, re-replicate

* Cache along reverse lookup path
— Provided data is immutable
— ...and performing recursive responses



Storage on successors?

Erasure-coding

— Data block split into / fragments

— m diff. fragments necessary to reconstruct the block
— Redundant storage of data

Replication

— Node stores entire block

— Special case: m =1 and /is number of replicas

— Redundant information spread over fewer nodes

Comparison of both methods
— r=1[/m amount of redundancy

. . g . I-i
Prob. block available: P = E( )po(l — po)

I=m



Latency: Erasure-coding vs. replication
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= Replication: slightly lower latency
" Erasure-coding: higher availability

* DHash++ uses erasure-coding withm =7 and / = 14



What about mutable data?

* Ugh!

 Different views

— lvy: Create version trees [Muthitacharoen, 0SDI ‘02]
* Think “distributed version control” system

* Global agreement?

— Reach consensus among all nodes belonging to a
successor groups: “distributed agreement”
* Difficult, especially at scale



An oft overlooked assumption:
The underlay isn’t perfect!

m

e All have implicit assumption: full connectivity

* Non-transitive connectivity (NTC) not uncommon

B<—C,CHA, AP B

e A thinks Cis its successor!



Does non-transitivity exist?

Gerding/Stribling PlanetLab study
— 9% of all node triples exhibit NTC
— Attributed high extent to Internet-2

Yet NTC is also transient

— One 3 hour PlanetLab all-pair-pings trace

— 2.9% have persistent NTC

— 2.3% have intermittent NTC

— 1.3% fail only for a single 15-minute snapshot

Level3 & Cogent, but Level3 <> X <> Cogent
NTC motivates RON and other overlay routing!



NTC problem fundamental?

S A B C R
Traditional routing
S—>R A
A— R B
B—-R R




NTC problem fundamental?

S A B C R
Traditional routing Greedy routing
S—>R A S—>R A
A— R B A— R C
B—->R R C—->R X

 DHTs implement greedy routing for scalability

* Sender might not use path, even though exists: finds
local minima when id-distance routing



Potential problems?

Invisible nodes
Routing loops
Broken return paths

Inconsistent roots



Iterative routing: Invisible nodes

B C )
A R

® Invisible nodes cause lookup to halt



Iterative routing: Invisible nodes

B K Dk
A R

m Invisible nodes cause lookup to halt

m Enable lookup to continue
= Tighter timeouts via network coordinates
= Lookup RPCs in parallel
= Unreachable node cache



Inconsistent roots

 Nodes do not agree where key is assighed:
inconsistent views of root

— Can be caused by membership changes

— Also due to non-transitive connectivity: may persist!



Inconsistent roots

* Root replicates (key,value) among leaf set

— Leafs periodically synchronize
— Get gathers results from multiple leafs

* Not applicable when require fast update



Longer term solution?

S A B C R

@Q—> 0 —>0 @ O
\W

Traditional routing Greedy routing
S—>R A S—>R A
A— R B A— R C
B—-R R C—-R X

* Route around local minima when possible

 Have nodes maintain link-state of neighbors

— Perform one-hop forwarding if necessary



Summary

* Peer-to-peer systems
— Unstructured systems
* Finding hay, performing keyword search
— Structured systems (DHTSs)
* Finding needles, exact match

e Distributed hash tables
— Based around consistent hashing with views of O(log n)
— Chord, Pastry, CAN, Koorde, Kademlia, Tapestry, Viceroy, ...

* Lots of systems issues

— Heterogeneity, storage models, locality, churn management,
underlay issues, ...

— DHTs (Kademlia) deployed in wild: Vuze is 1M+ active users



