Peer-to-peer systems and Distributed Hash
Tables (DHTSs)

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in COS 105)

Mike Freedman
http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Overlay Networks

* P2P applications need to:

— Track identities & (IP) addresses of peers

* May be many and may have significant churn
e Best not to have n? ID references

)

—Thus, nodes’ “views” << view in consistent hashing

— Route messages among peers
* If you don’t keep track of all peers, this is “multi-hop”

* Overlay network

— Peers doing both naming and routing

— I[P becomes “just” the low-level transport
e All the IP routing is opaque

e Assumption that network is fully-connected (< true?)
(Many slides borrowed from Joe Hellerstein’s VLDB 04 keynote)

Many New Challenges

* Relative to other parallel/distributed systems
— Partial failure
— Churn
— Few guarantees on transport, storage, etc.
— Huge optimization space
— Network bottlenecks & other resource constraints
— No administrative organizations
— Trust issues: security, privacy, incentives

* Relative to IP networking
— Much higher function, more flexible
— Much less controllable/predictable

Early P2P

Early P2P I: Client-Server

* Napster
i -
— g_j
i -
— 5—3
Xyz.mp3
- - -
g_j i gjxyz.mpS ?
o]
] —

Early P2P I: Client-Server

Napster
— Client-search search
= =1
- el
)
=
Xyz.mp3
- - .
= = =]
=
-]
] =

Early P2P I: Client-Server

Napster
— Client-search search
— =1
- el
D R
= -
Xyz.mp3
1 B
— —) xyz.mp3?
=
-]
] =

Early P2P I: Client-Server

Napster
— Client-search search
— “P2P” file xfer []

—
|:| 4
—
Xyz.mp3
] _J —
= ——+ [] 7xyz.mp3 ?
—
- _
] =7

i —h
Intian] : ﬂ
e —"

[
[
[
[
[
[
[
[
[
[
[
[
[

t-Server -

len

Cli

Early P2P |
— Client-search search

* Napster

]
=

— “P2P” file xfer

— | | Xxyz.mp3?

Early P2P Il: Flooding on Overlays

|

-
\ \1@3
D_

D

N

2\

An “unstructured” overlay network

xyz mp3?

Early P2P Il: Flooding on Overlays

i

3

7\ 3 ?

FIoodmg

Early P2P Il: Flooding on Overlays

= N_ =01

5\7 \MQE/ 7\5 xyz.mp3 ?
i /b\\ml‘/ﬁ |

N W Flooding

Early P2P Il: Flooding on Overlays

Early P2P Il.v: “Ultra/super peers”

e Ultra-peers can be installed (KaZaA) or self-
promoted (Gnutella)
— Also useful for NAT circumvention, e.g., in Skype

Hierarchical Networks (& Queries)

e |P
— Hierarchical name space
— Hierarchical routing: AS’s corr. with name space (not perfectly)

* DNS

— Hierarchical name space (“clients” + hierarchy of servers)
— Hierarchical routing w/aggressive caching

* Traditional pros/cons of hierarchical mgmt
— Works well for things aligned with the hierarchy
* E.g., physical or administrative locality

— Inflexible
* No data independence!

Lessons and Limitations

e Client-Server performs well
— But not always feasible: Performance not often key issue!

* Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

* Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.
— Guarantees about anything (answer quality, privacy, etc.)

Structured Overlays:
Distributed Hash Tables

DHT Qutline

High-level overview

Fundamentals of structured network topologies
— And examples

One concrete DHT
— Chord

Some systems issues

— Heterogeneity

— Storage models & soft state
— Locality

— Churn management

— Underlay network issues

High-Level Idea: Indirection

* |Indirection in space
— Logical (content-based) IDs, routing to those IDs
e “Content-addressable” network

— Tolerant of churn
* nodes joining and leaving the network

High-Level Idea: Indirection

* |Indirection in space
— Logical (content-based) IDs, routing to those IDs
e “Content-addressable” network

— Tolerant of churn
* nodes joining and leaving the network

* |Indirection in time
— Temporally decouple send and receive

— Persistence required. Hence, typical sol’'n: soft state
 Combo of persistence via storage and via retry 3

— “Publisher” requests TTL on storage] 9
— Republishes as needed %t-

 Metaphor: Distributed Hash Table

What is a DHT?

e Hash Table

— Data structure that maps “keys” to “values”
— Essential building block in software systems

* Distributed Hash Table (DHT)
— Similar, but spread across the Internet

* |Interface
— insert (key, value) or put (key, value)
— lookup (key) or get (key)

How?

Every DHT node supports a single operation:

— Given key as input; route messages toward
node holding key

DHT in action

K V
|:|7
5
K V
v _)
|:|7
—
|:|7
=TV

KV

KV
!
—
KV
)

|

DHT in action

KV

DHT in action

KV

KV

— 7)
= \ /\/ﬁ
5\ /D7 ka

Operation: take key as input; route msgs to node holding key

DHT in action: put()

KV

KV

N
|

— 7)
= \ /\/ﬁ
5\ /D7 ka

Operation: take key as input; route msgs to node holding key

DHT in action: put()

KV

_7\ |:| :’K V
T i
put(K,,V,) %

Operation: take key as input; route msgs to node holding key

DHT in action: put()

(KpVi) ¢y
N, KV

b\’\v D_*
7‘ K V D7 K V

J
\MJD
L

WAV T

kv i

Operation: take key as input; route msgs to node holding key

DHT in action: get()

KV

D7 7
KV \ D_7
- KV
D p—
\KV
|

=TV
kv)

get (K,)

Operation: take key as input; route msgs to node holding key

Iterative vs. Recursive Routing

Previously showed recursive.

Another option: iterative £ KV
D 7
= |
KV N =
i \\ - KV
:_j KV \D_
\ \\\ KV
‘ ‘ KV Di \\\
H} 7 \\D_7
KV \ S
- I =
D_j\D /§—,<\, Ky
o kv _

get (K,)

Operation: take key as input; route msgs to node holding key

DHT Desigh Goals

* An “overlay” network with:
— Flexible mapping of keys to physical nodes
— Small network diameter
— Small degree (fanout)
— Local routing decisions
— Robustness to churn
— Routing flexibility
— Decent locality (low “stretch”)
e Different “storage” mechanisms considered:
— Persistence w/ additional mechanisms for fault recovery
— Best effort caching and maintenance via soft state

DHT Qutline

High-level overview

Fundamentals of structured network topologies
— And examples

One concrete DHT
— Chord

Some systems issues

— Heterogeneity

— Storage models & soft state
— Locality

— Churn management

— Underlay network issues

An Example DHT: Chord

e Assume n = 2" nodes for a moment
— A “complete” Chord ring

— We’'ll generalize shortly ‘ ‘ ‘ .

An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors

ONoRO)

An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors

An Example DHT: Chord

* Each node has particular view of network
— Set of known neighbors

=0
AN

O
>

—

>

Cayley Graphs

 The Cayley Graph (S, E) of a group:
— Vertices corresponding to the underlying set S
— Edges corresponding to the actions of the generators

* (Complete) Chord is a Cayley graph for (Z,,+) NIV
— S=Zmod n (n = 2%, ’
— Generators {1, 2, 4, ..., 21}
— That’s what the polygons are all about!

e Fact: Most (complete) DHTs are Cayley graphs

— And they didn’t even know it!
— Follows from parallel InterConnect Networks (ICNs)

How Hairy met Cayley

What do you want in a structured network?
— Uniformity of routing logic

G

/
R ,
— Efficiency/load-balance of routing and malntenance ‘?14,,9
. . WIS T)
— Generality at different scales R

Theorem: All Cayley graphs are vertex symmetric.
— l.e. isomorphic under swaps of nodes

— So routing from y to x looks just like routing from (y-x) to 0
* The routing code at each node is the same

* Moreover, under a random workload the routing responsibilities
(congestion) at each node are the same!

Cayley graphs tend to have good degree/diameter tradeoffs
— Efficient routing with few neighbors to maintain
Many Cayley graphs are hierarchical

— Made of smaller Cayley graphs connected by a new generator

* E.g. a Chord graph on 2™*1 nodes looks like 2 interleaved (half-notch
rotated) Chord graphs of 2™ nodes with half-notch edges

Pastry/Bamboo

Based on Plaxton Mesh @ @
Names are fixed bit strings @ @

Topology: Prefix Hypercube
— For each bit from left to right,
pick neighbor ID with common

flipped bit and common prefix
— log n degree & diameter

Plus a ring
— For reliability (with k pred/succ)

Suffix Routing from A to B

— “Fix” bits from left to right
— E.g. 1010to 0001: 1010 - 0101 - 0010 - 0000 - 0001

CAN: Content Addressable Network

(0,1)

(0,0)

(0,0.5, 0.5, 1)

(0.5,0.5, 1, 1)

(0,0, 0.5, 0.5)

(0.5,0.25 0.75, 0.5)

(0.75,0,

= Exploit multiple dimensions

= Each node is assigned a zone

1,0.5)

(1,0)

Nodes ID’d by zone boundaries

= Join: chose random point,

split its zones

Routing in 2-dimensions

(0,1)
(0.5,0.5, 1, 1)
(0,0.5,0.5, 1)
(0.5,0.25} 0.75, 0.5)
o//' \\.
(0,0, 0.5, 0.5) (0.75,0,1, 0.5)
(0,0) (1,0)

e Routing is navigating a d-dimensional ID space
— Route to closest neighbor in direction of destination
— Routing table contains O(d) neighbors

* Number of hops is O(dN/d)

Koorde

* DeBruijn graphs
— Link from node x to nodes
2x and 2x+1
— Degree 2, diameter log n
e Optimal!
e Koorde is Chord-based

— Basically Chord, but with
DeBruijn fingers

Topologies of Other Oft-cited DHTs

Tapestry

— Very similar to Pastry/Bamboo topology
— Noring

Kademlia

— Also similar to Pastry/Bamboo

— But the “ring” is ordered by the XOR metric: “bidirectional”
— Used by the eMule / BitTorrent / Azureus (Vuze) systems

Viceroy
— An emulated Butterfly network
Symphony

— A randomized “small-world” network

Incomplete Graphs: Emulation

* For Chord, we assumed exactly 2™

nodes. What if not? () ©
— Need to “emulate” a complete graph
even when incomplete. @ @
 DHT-specific schemes used ® ®
— In Chord, node x is responsible for the @

range (pred(x), x]

— The “holes” on the ring should be @
randomly distributed due to hashing

Handle node heterogeneity

e Sources of unbalanced load o
— Unequal portion of keyspace @

* Balancing keyspace © ©

— Consistent hashing: Region owned @ @
by single node is O(1/n (1 + log n)) @

— Unequal load per key

— What about node hetergeneity?
* Nodes create “virtual nodes” of # @

proportional to capacity

* Load per key

— Assumes many keys per region

Chord in Flux

Essentially never a
“complete” graph

— Maintain a “ring” of ~
successor nodes

— For redundancy, point to k /E;

for IDs at powers of 2
e Called “fingers” in Chord
* 1st finger is the successor =~ T

SUCCEeSSOrs L
— Point to nodes responsible =

Joining the Chord Ring .

e Need IP of some node
e Pickarandom ID
— e.g. SHA-1(IP)

 Send msg to current
owner of that ID P

— That’s your successor in
Chord routing

:
\

Z—’\B -

Joining the Chord Ring

Update pred/succ links

— Oncering is in place, all well!

Inform application to move
data appropriately

Search to find “fingers” of 2,

varying powers of 2 L
— Or just copy from pred /succ =
and check! o e
Inbound fingers fixed lazily \D =
==~ -/

Theorem: If consistency is reached before
network doubles, lookups remain log n

Average lookup latency (msec)

800

700

600

500

400

300

200

100

Fingers must be constrained?

10 100
Number of PNS samples

1000

Median latency (ms)

500 7
400—5
300—5
200—;

100 -

Base

Recursive lookup

* No: Proximity Neighbor Selection (PNS)

Proximity routing

Latency optimization techniques (cumulative)

Handling Churn

 Churn
— Session time? Life time?
* For system resilience, session time is what matters

e Three main issues

— Determining timeouts
 Significant component of lookup latency under churn

— Recovering from a lost neighbor in “leaf set”
* Periodic, not reactive!

* Reactive causes feedback cycles
— Esp. when a neighbor is stressed and timing in and out

— Neighbor selection again

Timeouts

* Recall Iterative vs. Recursive Routing
— |terative: Originator requests IP address of each hop
— Recursive: Message transferred hop-by-hop

e Effect on timeout mechanism

— Need to track latency of communication channels

— Iterative results in direct nxn communication

* Can’t keep timeout stats at that scale
* Solution: virtual coordinate schemes [Vivaldi, etc.]

— With recursive can do TCP-like tracking of latency
* Exponentially weighted mean and variance
* Upshot: Both work OK up to a point

— TCP-style does somewhat better than virtual coords at
modest churn rates (23 min. or more mean session time)

— Virtual coords begins to fail at higher churn rates

Cumulative probability

Recursive vs. lterative

1 T T T T - 500
09
08 | - 400
0.7 _
06 S 300
05 g
04 | £ 200
S]
03 r
0.2 100
BT Iterative]
Recursive]
0 1 | | | 0
0 200 400 600 800 1000 Base Recursive lookup
Latency (ms) Latency optimization techniques (cumulative)

Left: Simulation of 20,000 |lkps for random keys
Recursive lookup takes 0.6 times as long as iterative

Right Figure: 1,000 lookups in test-bed; confirms simulation

Recursive vs. lterative

e Recursive

— Faster under many conditions
* Fewer round-trip-times
* Better proximity neighbor selection
e Can timeout individual RPCs more tightly

— Better tolerance to network failure
* Path between neighbors already known

* |terative

— Tighter control over entire lookup
 Easily support windowed RPCs for parallelism
e Easier to timeout entire lookup as failed

— Faster to return data directly than use recursive path

Storage Models for DHTs

* Up to now we focused on routing
— DHTs as “content-addressable network”

* Implicit in “DHT” name is some kind of storage
— Or perhaps a better word is “memory”

— Enables indirection in time
— But also can be viewed as a place to store things

3

Storage models

* Store only on key’s immediate successor

— Churn, routing issues, packet loss make lookup
failure more likely

e Store on k successors

— When nodes detect succ/pred fail, re-replicate

* Cache along reverse lookup path
— Provided data is immutable
— ...and performing recursive responses

Storage on successors?

Erasure-coding

— Data block split into / fragments

— m diff. fragments necessary to reconstruct the block
— Redundant storage of data

Replication

— Node stores entire block

— Special case: m =1 and /is number of replicas

— Redundant information spread over fewer nodes

Comparison of both methods
— r=1[/m amount of redundancy

. . g . I-i
Prob. block available: P = E()po(l — po)

I=m

Latency: Erasure-coding vs. replication

140

120 | M/_/ —
100 | o o -
e omencmsn Ko mmn e neammneem oK

)

€10} ~

> T

G . .

fer U@

ko)

I

o

st 60 [

@

2

D

= 40 b

20 F r=2 ——
r=3 —»—
r=4 ----%--
0 : |

0 029 S0 49z Sa9rs 695 Toe 829599z 1009e
Availability

= Replication: slightly lower latency
" Erasure-coding: higher availability

* DHash++ uses erasure-coding withm =7 and / = 14

What about mutable data?

* Ugh!

 Different views

— lvy: Create version trees [Muthitacharoen, 0SDI ‘02]
* Think “distributed version control” system

* Global agreement?

— Reach consensus among all nodes belonging to a
successor groups: “distributed agreement”
* Difficult, especially at scale

An oft overlooked assumption:
The underlay isn’t perfect!

m

e All have implicit assumption: full connectivity

* Non-transitive connectivity (NTC) not uncommon

B<—C,CHA, AP B

e A thinks Cis its successor!

Does non-transitivity exist?

Gerding/Stribling PlanetLab study
— 9% of all node triples exhibit NTC
— Attributed high extent to Internet-2

Yet NTC is also transient

— One 3 hour PlanetLab all-pair-pings trace

— 2.9% have persistent NTC

— 2.3% have intermittent NTC

— 1.3% fail only for a single 15-minute snapshot

Level3 & Cogent, but Level3 <> X <> Cogent
NTC motivates RON and other overlay routing!

NTC problem fundamental?

S A B C R
Traditional routing
S—>R A
A— R B
B—-R R

NTC problem fundamental?

S A B C R
Traditional routing Greedy routing
S—>R A S—>R A
A— R B A— R C
B—->R R C—->R X

 DHTs implement greedy routing for scalability

* Sender might not use path, even though exists: finds
local minima when id-distance routing

Potential problems?

Invisible nodes
Routing loops
Broken return paths

Inconsistent roots

Iterative routing: Invisible nodes

B C)
A R

® Invisible nodes cause lookup to halt

Iterative routing: Invisible nodes

B K Dk
A R

m Invisible nodes cause lookup to halt

m Enable lookup to continue
= Tighter timeouts via network coordinates
= Lookup RPCs in parallel
= Unreachable node cache

Inconsistent roots

 Nodes do not agree where key is assighed:
inconsistent views of root

— Can be caused by membership changes

— Also due to non-transitive connectivity: may persist!

Inconsistent roots

* Root replicates (key,value) among leaf set

— Leafs periodically synchronize
— Get gathers results from multiple leafs

* Not applicable when require fast update

Longer term solution?

S A B C R

@Q—> 0 —>0 @ O
\W

Traditional routing Greedy routing
S—>R A S—>R A
A— R B A— R C
B—-R R C—-R X

* Route around local minima when possible

 Have nodes maintain link-state of neighbors

— Perform one-hop forwarding if necessary

Summary

* Peer-to-peer systems
— Unstructured systems
* Finding hay, performing keyword search
— Structured systems (DHTSs)
* Finding needles, exact match

e Distributed hash tables
— Based around consistent hashing with views of O(log n)
— Chord, Pastry, CAN, Koorde, Kademlia, Tapestry, Viceroy, ...

* Lots of systems issues

— Heterogeneity, storage models, locality, churn management,
underlay issues, ...

— DHTs (Kademlia) deployed in wild: Vuze is 1M+ active users

