

UNDERLAYS and **MIDDLEBOXES**

READING: SECTION 8.

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in COS 105)

Mike Freedman http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Outline today

Network-layer principles

- Globally unique identifiers and simple packet forwarding
- Middleboxes and tunneling to violate these principles...

Underlay tunnels

- Across routers within AS, build networks "below" IP route
- Provide better control, flexibility, QoS, isolation, ...

Network Address Translation (NAT)

Multiple machines w/ private addrs behind a single public addr

Firewalls

Discarding unwanted packets

LAN appliances

- Improving performance and security
- Using a middlebox at sending and receiving sites

We saw tunneling "on top of" IP. What about tunneling "below" IP?

Introducing
Multi-Protocol Label Switching
(MPLS)

MPLS Overview

- Main idea: Virtual circuit
 - Packets forwarded based only on circuit identifier

Router can forward traffic to the same destination on different interfaces/paths.

MPLS Overview

Circuit Abstraction: Label Swapping

- Label-switched paths (LSPs): Paths are "named" by the label at the path's entry point
- At each hop, MPLS routers:
 - Use label to determine outgoing interface, new label
 - Thus, push/pop/swap MPLS headers that encapsulate IP
- Label distribution protocol: responsible for disseminating signalling information

Reconsider security problem

Layer 3 Virtual Private Networks

Private communications over a public network

 A set of sites that are allowed to communicate with each other

- Defined by a set of administrative policies
 - Determine both connectivity and QoS among sites
 - Established by VPN customers
 - One way to implement: BGP/MPLS VPN (RFC 2547)

Layer 3 BGP/MPLS VPNs

- Isolation: Multiple logical networks over a single, shared physical infrastructure
- Tunneling: Keeping routes out of the core

High-Level Overview of Operation

 IP packets arrive at provider edge router (PE)

 Destination IP looked up in forwarding table

- Multiple "virtual" forwarding tables

Virtual Routing and Forwarding

Separate tables per customer at each router

Forwarding in BGP/MPLS VPNs

- Step 1: Packet arrives at incoming interface
 - Site VRF determines BGP next-hop and Label #2

 Step 2: BGP next-hop lookup, add corresponding LSP (also at site VRF)

Forwarding

- PE and P routers have BGP next-hop reachability through the backbone IGP
- Labels are distributed through LDP (hop-by-hop) corresponding to BGP Next-Hops
- Two-Label Stack is used for packet forwarding
 - Top label indicates Next-Hop (interior label)
 - Second label indicates outgoing interface / VRF (exterior label)

Forwarding

Middleboxes

Network-Layer Principles

- Globally unique identifiers
 - Each node has a unique, fixed IP address
 - ... reachable from everyone and everywhere
- Simple packet forwarding
 - Network nodes simply forward packets
 - ... rather than modifying or filtering them

Internet Reality

- Host mobility
 - Changes in IP addresses as hosts move
- IP address depletion
 - Dynamic assignment of IP addresses
 - Private addresses (10.0.0.0/8, 192.168.0.0/16, ...)
- Security concerns
 - Discarding suspicious or unwanted packets
 - Detecting suspicious traffic
- Performance concerns
 - Controlling how link bandwidth is allocated
 - Storing popular content near the clients

Middleboxes

Middleboxes are intermediaries

- Interposed in-between the communicating hosts
- Often without knowledge of one or both parties

Examples

- Network address translators
- Firewalls
- Traffic shapers
- Intrusion detection systems
- Transparent Web proxy caches
- Application accelerators
- Tunnel endpoints

Two Views of Middleboxes

- An abomination
 - Violation of layering
 - Cause confusion in reasoning about the network
 - Responsible for many subtle bugs
- A practical necessity
 - Solving real and pressing problems
 - Needs that are not likely to go away
- Would they arise in any edge-empowered network, even if redesigned from scratch?

Network Address Translation

History of NATs

- IP address space depletion
 - Clear in early 90s that 2³² addresses not enough
 - Work began on a successor to IPv4
- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts
- Meant to provide temporary relief
 - Intended as a short-term remedy
 - Now, NAT are very widely deployed
 - ... much moreso than IPv6 ☺

Active Component in the Data Path

What if Both Hosts Contact Same Site?

- Suppose hosts contact the same destination
 - E.g., both hosts open a socket with local port 3345
 to destination 128.119.40.186 on port 80
- NAT gives packets same source address
 - All packets have source address 138.76.29.7

Problems

- Can destination differentiate between senders?
- Can return traffic get back to the correct hosts?

Port-Translating NAT

Map outgoing packets

- Replace source address with NAT address
- Replace source port number with a new port number
- Remote hosts respond using (NAT address, new port #)

Maintain a translation table

Store map of (src addr, port #) to (NAT addr, new port #)

Map incoming packets

- Consult the translation table
- Map the destination address and port number
- Local host receives the incoming packet

Network Address Translation Example

Maintaining the Mapping Table

- Create an entry upon seeing a packet
 - Packet with new (source addr, source port) pair
- Eventually, need to delete the map entry
 - But when to remove the binding?
- If no packets arrive within a time window
 - ... then delete the mapping to free up the port #s
 - At risk of disrupting a temporarily idle connection
- Yet another example of "soft state"
 - I.e., removing state if not refreshed for a while

Where is NAT Implemented?

- Home router (e.g., Linksys box)
 - Integrates router, DHCP server, NAT, etc.
 - Use single IP address from the service provider
 - ... and have a bunch of hosts hiding behind it
- Campus or corporate network
 - NAT at the connection to the Internet
 - Share a collection of public IP addresses
 - Avoid complexity of renumbering end hosts and local routers when changing service providers

Practical Objections Against NAT

- Port #s are meant to identify sockets
 - Yet, NAT uses them to identify end hosts
 - Makes it hard to run a server behind a NAT

Running Servers Behind NATs

- Running servers is still possible
 - Admittedly with a bit more difficulty
- By explicit configuration of the NAT box
 - E.g., internal service at <dst 138.76.29.7, dst-port 80>
 - ... mapped to <dst 10.0.0.1, dst-port 80>
- More challenging for P2P applications
 - Especially if both peers are behind NAT boxes
- Solutions possible here as well
 - Existing work-arounds (e.g., in Skype)
 - Ongoing work on "NAT traversal" techniques

Principled Objections Against NAT

- Routers are not supposed to look at port #s
 - Network layer should care only about IP header
 - ... and not be looking at the port numbers at all
- NAT violates the end-to-end argument
 - Network nodes should not modify the packets
- IPv6 is a cleaner solution
 - Better to migrate than to limp along with a hack

That's what you get when you design a network that puts power in the hands of end users!

Firewalls

Firewalls

Isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others.

Internet Attacks: Denial of Service

Denial-of-service attacks

- Outsider overwhelms the host with unsolicited traffic
- ... with the goal of preventing any useful work

Example: attacks by botnets

- Bad guys take over a large collection of hosts
- ... and program these hosts to send traffic to your host
- Leading to excessive traffic

Motivations for denial-of-service attacks

- Malice (e.g., just to be mean)
- Revenge (e.g., for some past perceived injustice)
- Greed (e.g., blackmailing)

Internet Attacks: Break-Ins

Breaking in to a host

- Outsider exploits a vulnerability in the end host
- ... with the goal of changing the behavior of the host

Example

- Bad guys know a Web server has a buffer-overflow bug
- ... and, say, send an HTTP request with a long URL
- Allowing them to run their own code

Motivations for break-ins

- Take over the machine to launch other attacks
- Steal information stored on the machine
- Modify/replace the content the site normally returns

Packet Filtering

- Internal network connected to Internet via firewall
- Firewall filters packet-by-packet, based on:
 - Source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits
 - Deep packet inspection on packet contents (DPI)

Packet Filtering Examples

- Block all packets with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows blocked
 - All Telnet connections are blocked
- Block inbound TCP packets with SYN but no ACK
 - Prevents external clients from making TCP connections with internal clients
 - But allows internal clients to connect to outside
- Block all packets with TCP port of Quake

Firewall Configuration

- Firewall applies a set of rules to each packet
 - To decide whether to permit or deny the packet
- Each rule is a test on the packet
 - Comparing IP and TCP/UDP header fields
 - ... and deciding whether to permit or deny
- Order matters
 - Once packet matches a rule, the decision is done

Firewall Configuration Example

- Alice runs a network in 222.22.0.0/16
 - Wants to let Bob's school access certain hosts
 - Bob is on 111.11.0.0/16
 - Alice's special hosts on 222.22.22.0/24
 - Alice doesn't trust Trudy, inside Bob's network
 - Trudy is on 111.11.11.0/24
 - Alice doesn't want any other traffic from Internet

Rules

- #1: Don't let Trudy's machines in
 - Deny (src = 111.11.11.0/24, dst = 222.22.0.0/16)
- #2: Let rest of Bob's network in to special dsts
 - Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
- #3: Block the rest of the world
 - Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0)

A Variation: Traffic Management

Permit vs. deny is too binary a decision

- Maybe better to classify the traffic based on rules
- ... and then handle the classes of traffic differently

Traffic shaping (rate limiting)

- Limit the amount of bandwidth for certain traffic
- E.g., rate limit on Web or P2P traffic

Separate queues

- Use rules to group related packets
- And then do round-robin scheduling across groups
- E.g., separate queue for each internal IP address

Firewall Implementation Challenges

Per-packet handling

- Must inspect every packet
- Challenging on very high-speed links

Complex filtering rules

- May have large # of rules
- May have very complicated rules

Location of firewalls

- Complex firewalls near the edge, at low speed
- Simpler firewalls in the core, at higher speed

Clever Users Subvert Firewalls

- Example: filtering dorm access to a server
 - Firewall rule based on IP addresses of dorms
 - ... and the server IP address and port number
 - Problem: users may log in to another machine
 - E.g., connect from the dorms to another host
 - ... and then onward to the blocked server
- Example: filtering P2P based on port #s
 - Firewall rule based on TCP/UDP port numbers
 - E.g., allow only port 80 (e.g., Web) traffic
 - Problem: software using non-traditional ports
 - E.g., write P2P client to use port 80 instead

LAN Appliances aka WAN Accelerators aka Application Accelerators

(Following examples are "tunnels" between on-path middleboxes)

At Connection Point to the Internet

- Improve performance between edge networks
 - E.g., multiple sites of the same company
 - Through buffering, compression, caching, ...
- Incrementally deployable
 - No changes to the end hosts or the rest of the Internet
 - Inspects the packets as they go by, and takes action

Example: Improve TCP Throughput

- Appliance with a lot of local memory
- Sends ACK packets quickly to the sender
- Overwrites receive window with a large value
- Or, even run a new and improved version of TCP

Example: Compression

- Compress the packet
- Send the compressed packet
- Uncompress at the other end
- Maybe compress across successive packets

Example: Caching

- Cache copies of the outgoing packets
- Check for sequences of bytes that match past data
- Just send a pointer to the past data
- And have the receiving appliance reconstruct

Example: Encryption

- Two sites share keys for encrypting traffic
- Sending appliance encrypts the data
- Receiving appliance decrypts the data
- Protects the sites from snoopers on the Internet

Conclusions

- Middleboxes address important problems
 - Getting by with fewer IP addresses
 - Blocking unwanted traffic
 - Making fair use of network resources
 - Improving end-to-end performance
- Middleboxes cause problems of their own
 - No longer globally unique IP addresses
 - No longer can assume network simply delivers packets