

Distance-Vector Routing

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in COS 105)

Michael Freedman
http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Shortest-Path Routing

- Path-selection model
 - Destination-based
 - Load-insensitive (e.g., static link weights)
 - Minimum hop count or sum of link weights

Shortest-Path Problem

- Compute: path costs to all nodes
 - From a given source u to all other nodes
 - Cost of the path through each outgoing link
 - Next hop along the least-cost path to s

Bellman-Ford Algorithm

- Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $-d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 - Node x maintains costs of direct links c(x,v)
- $D_x(y)$ = estimate of least cost from x to y
 - Node x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- Node x maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors
 - And neighbors update their own distance vectors
 - $-D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges

Distance Vector Algorithm

Iterative, asynchronous:

each local iteration caused by:

- Local link cost change
- Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if distance to any destination has changed, *notify* neighbors

Distance Vector Example: Step 1

Optimum 1-hop paths

Та	able for	Α	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	8	1	С	8	_		
D	∞	1	D	3	D		
Е	2	Е	Е	∞	_		
F	6	6 F		1	F		

Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	8	_	Α	8	_	Α	2	Α	Α	6	Α
В	%	1	В	3	В	В	8	1	В	1	В
С	0	С	С	1	С	С	∞	1	С	1	С
D	1	D	D	0	D	D	∞	-	D	∞	-
Е	∞	-	Е	∞	_	Е	0	Е	Е	3	Е
F	1	F	F	8	_	F	3	F	F	0	F

Distance Vector Example: Step 2

Optimum 2-hop paths

Ta	able for	Α	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	7	F	С	2	F		
D	7	В	D	3	D		
Е	2	Е	Е	4	F		
F	5 E		F	1	F		

Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	7	F	Α	7	В	Α	2	Α	Α	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	∞	_	D	2	С
Е	4	F	Е	∞	_	Е	0	Е	Е	3	Е
F	1	F	F	2	С	F	3	F	F	0	F

Distance Vector Example: Step 3

Optimum 3-hop paths

Та	able for	·A	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	6	Е	С	2	F		
D	7	В	D	3	D		
Е	2	Е	E 4		F		
F	5 E		F	1	F		

Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	6	F	Α	7	В	Α	2	Α	Α	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	5	F	D	2	С
Е	4	F	Е	5	С	Е	0	Е	Е	3	Е
F	1	F	F	2	С	F	3	F	F	0	F

Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates the distance table
- If cost change in least cost path, notify neighbors

Distance Vector: Link Cost Changes

Link cost changes:

- Good news travels fast
- Bad news travels slow "count to infinity" problem!

Distance Vector: Poison Reverse

If Z routes through Y to get to X:

 Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)

 Still, can have problems when more than 2 routers are involved

Routing Information Protocol (RIP)

Distance vector protocol

- Nodes send distance vectors every 30 seconds
- ... or, when an update causes a change in routing

Link costs in RIP

- All links have cost 1
- Valid distances of 1 through 15
- ... with 16 representing infinity
- Small "infinity" → smaller "counting to infinity" problem

RIP is limited to fairly small networks

E.g., used in the Princeton campus network

Comparison of LS and DV Routing

Message complexity

- <u>LS</u>: with n nodes, E links,
 O(nE) messages sent
- <u>DV</u>: exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- <u>DV</u>: convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)

Similarities of LS and DV Routing

Shortest-path routing

- Metric-based, using link weights
- Routers share a common view of how good a path is

As such, commonly used inside an organization

- RIP and OSPF are mostly used as intradomain protocols
- E.g., Princeton uses RIP, and AT&T uses OSPF

But the Internet is a "network of networks"

- How to stitch the many networks together?
- When networks may not have common goals
- ... and may not want to share information