Transport Protocols
Reading: Sections 2.5, 5.1, and 5.2

COS 461: Computer Networks
Spring 2010 (MW 3:00-4:20 in COS 105)

Mike Freedman

http://www.cs.princeton.edu/courses/archive/spring10/cos461/

Goals for Today’s Lecture

* Principles underlying transport-layer services
— (De)multiplexing
— Detecting corruption
— Reliable delivery
— Flow control

* Transport-layer protocols in the Internet

— User Datagram Protocol (UDP)
* Simple (unreliable) message delivery
* Realized by a SOCK_DGRAM socket

— Transmission Control Protocol (TCP)

* Reliable bidirectional stream of bytes
* Realized by a SOCK_STREAM socket

Role of Transport Layer

e Application layer
— Between applications (e.g., browsers and servers)

— E.g., HyperText Transfer Protocol (HTTP), File Transfer Protocol
(FTP), Network News Transfer Protocol (NNTP)

* Transport layer
— Between processes (e.g., sockets)
— Relies on network layer and serves the application layer
— E.g., TCP and UDP

* Network layer
— Between nodes (e.g., routers and hosts)
— Hides details of the link technology
— E.g., IP

Transport Protocols

* Provide logical communication
between application processes
running on different hosts

transport

physical

e Run on end hosts

— Sender: breaks application |i=
messages into segments, \ (E=aE
P physical || network
and passes to network layer N data lnk

— Receiver: reassembles
segments into messages,
passes to application layer

 Multiple transport protocols
available to applications

— Internet: TCP and UDP ,

data link
physical

Two Basic Transport Features

 Demultiplexing: port numbers
Server host 128.2.194.242

Service request for
e : 128.2.194.242:80

Web server
(port 80)

: : (i.e., the Web server)
Echo server

 Error detection: checksums

IP payload

y
detect corruption

User Datagram Protocol (UDP)

* Datagram messaging service
— Demultiplexing of messages: port numbers
— Detecting corrupted messages: checksum

* Lightweight communication between processes
— Send messages to and receive them from a socket
— Avoid overhead and delays of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Why Would Anyone Use UDP?

Fine control over what data is sent and when

— As soon as an application process writes into the socket
— ... UDP will package the data and send the packet

No delay for connection establishment

— UDP just blasts away without any formal preliminaries
— ... which avoids introducing any unnecessary delays

No connection state

— No allocation of buffers, parameters, sequence #s, etc.
— ... making it easier to handle many active clients at once

Small packet header overhead
— UDP header is only eight-bytes long

Popular Applications That Use UDP

* Simple query protocols like DNS

onnection establishment is overkill

— Easi plication retransmit if needed

 Multimedia streaming
— Retransmitting lost/corrupted packe rthwhile

— By the time the packet is retransmitted, it o late
— E.g., telephone calls, video conferencing, gaming

Transmission Control Protocol (TCP)

Stream-of-bytes service
— Sends and receives a stream of bytes, not messages

Reliable, in-order delivery

— Checksums to detect corrupted data

— Sequence numbers to detect losses and reorder data

— Acknowledgments & retransmissions for reliable delivery

Connection oriented

— Explicit set-up and tear-down of TCP session
Flow control

— Prevent overflow of the receiver’s buffer space

Congestion control (next class!)
— Adapt to network congestion for the greater good

Breaking a Stream of Bytes
iInto TCP Segments

TCP “Stream of Bytes” Service

Host A
555 5
Host B \\\\\\\\
HEEEN N

...Emulated Using TCP “Segments”

Host A
S
olo|o|o o
O|—={rofwo e
(]

TCP Data < iegment sent when:

Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.

TCP Data
HoST B
YVVYY A 4
SRR T
olo|o|o o
Of—=bofw 00
(=)

TCP Segment

IP Data

IP Hdr | —>

TCP Data (segment) TCP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
— E.g., up to 1500 bytes on an Ethernet

 TCP packet

— |P packet with a TCP header and data inside
— TCP header is typically 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream

Sequence Number

Host A

ISN (initial sequence number)

y

I8 9IAg

&

F vVVY A\ 4

TCP Data

Sequence number
= 15t byte

TCP Data
HostB ||| .

Initial Sequence Number (ISN)

Sequence number for the very first byte
— E.g., Why not a de facto ISN of 0?

Practical issue

— |P addresses and port #s uniquely identify a connection
— Eventually, though, these port #s do get used again

— ... and there is a chance an old packet is still in flight

— ... and might be associated with the new connection

So, TCP requires changing the ISN over time
— Set from a 32-bit clock that ticks every 4 microseconds
— ... which only wraps around once every 4.55 hours

But, this means the hosts need to exchange ISNs

Reliable Delivery on a Lossy
Channel With Bit Errors

An Analogy: Talking on a Cell Phone

* Alice and Bob on their cell phones
— Both Alice and Bob are talking

 What if Alice couldn’t understand Bob?
— Bob asks Alice to repeat what she said

 What if Bob hasn’t heard Alice for a while?
— Is Alice just being quiet?
— Or, have Bob and Alice lost reception?
— How long should Bob just keep on talking?
— Maybe Alice should periodically say “uh huh”
— ... or Bob should ask “Can you hear me now?” ©

Some Take-Aways from the Example

* Acknowledgments from receiver
— Positive: “okay” or “uh huh” or “ACK”
— Negative: “please repeat that” or “NACK”
* Timeout by the sender (“stop and wait”)
— Don’t wait indefinitely w/o receiving some response
— ... whether a positive or a negative acknowledgment
e Retransmission by the sender

— After receiving a “NACK” from the receiver
— After receiving no feedback from the receiver

Challenges of Reliable Data Transfer

* Over a perfectly reliable channel
— All of the data arrives in order, just as it was sent
— Simple: sender sends data, and receiver receives data

* Over a channel with bit errors
— All of the data arrives in order, but some bits corrupted
— Receiver detects errors and says “please repeat that”
— Sender retransmits the data that were corrupted

* Over a lossy channel with bit errors
— Some data are missing, and some bits are corrupted
— Receiver detects errors but cannot always detect loss
— Sender must wait for acknowledgment (“ACK” or “OK”)
— ... and retransmit data after some time if no ACK arrives

TCP Support for Reliable Delivery

- Detect bit errors: checksum
— Used to detect corrupted data at the receiver
— ...leading the receiver to drop the packet

- Detect missing data: sequence number
— Used to detect a gap in the stream of bytes
— ... and for putting the data back in order

- Recover from lost data: retransmission
— Sender retransmits lost or corrupted data
— Two main ways to detect lost packets

TCP Acknowledgments

Host A

ISN (initial sequence number)

4
Sequence number | M5
- 15" byte TCP Data :,CDR
P
TCP Data | 'S,

Host B

ACK sequence
humber = next
expected byte

Automatic Repeat reQuest (ARQ)

» Automatic Repeat reQuest

—Receiver sends
acknowledgment (ACK) when
it receives packet

— Sender waits for ACK and

timeouts if it does not arrive
within some time period

« Simplest ARQ protocol

— Stop and wait
—Send a packet, stop and wait
until ACK arrives

Time

Sender Receiver

: y

3 Ti_rp_g_out

:"%

Timeout

_Timeout

| ARGk —

Reasons for Retransmission

Pac
W’

Packet lost

~-{—Pack
: \et>

Timeout

_Timeout

| o —

Pac
W’

K

ACK lost
DUPLICATE
PACKET

__Timeout

Timeout

Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?

 Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions
— Too long: excessive delays when packet lost

e TCP sets timeout as a function of the RTT

— Expect ACK to arrive after an “round-trip time”
— ... plus a fudge factor to account for queuing

 But, how does the sender know the RTT?

— Can estimate the RTT by watching the ACKs

— Smooth estimate (EWMA): keep a running avg of RTT
* EstimatedRTT =a * EstimatedRTT + (1 —a) * SampleRTT

— Compute timeout: TimeOut = 2 * EstimatedRTT

RTT (milliseconds)

350 -

300

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

200

150

100

8 15 22 29 36 43 50 57 64 7 78 85 92

time (seconnds)

—o— SampleRTT —=— Estimated RTT

99

106

A Flaw in This Approach

An ACK doesn’t really acknowledge a transmission
— Rather, it acknowledges receipt of the data

Consider a retransmission of a lost packet

— If you assume the ACK goes with the 1st transmission

— ... the SampleRTT comes out way too large

Consider a duplicate packet
— If you assume the ACK goes with the 2nd transmission
— ... the Sample RTT comes out way too small

Simple solution in the Karn/Partridge algorithm
— Only collect samples for segments sent one single time

Still, Timeouts are Inefficient

* Timeout-based retransmission
— Sender transmits a packet and waits until timer expires
— ... and then retransmits from the lost packet onward

sender receiver
rcv pkio
send Pkt seng ACKO
> sendpld2 —_ (loss) Sord Acki
send pkit3
(wait) rcv pkt3, discard
/ send ACKI
rcv ACKO
send pkt4
rcv pkt4, discard
oV dAgk’% —— send ACK]
rcv pkib, discard
— oki2 timeout N sond ACK]
send pkit2
send pkt3 rev pkt2, deliver

send pkt4 \ send ACK2
send pktb rcv pkt3, deliver
\ send ACK3

Fast Retransmission

* Better solution possible under sliding window
— Although packet n might have been lost
— ... packets n+1, n+2, and so on might get through

* |dea: have the receiver send ACK packets

— ACK says that receiver is still awaiting nt" packet
* And repeated ACKs suggest later packets have arrived

— Sender can view the “duplicate ACKs” as an early hint
e ... that the nt" packet must have been lost
e ... and perform the retransmission early

* Fast retransmission
— Sender retransmits data after the triple duplicate ACK

Effectiveness of Fast Retransmit

e When does Fast Retransmit work best?

— Long data transfers
* High likelihood of many packets in flight

— High window size
e High likelihood of many packets in flight

— Low burstiness in packet losses
* Higher likelihood that later packets arrive successfully

* Implications for Web traffic

— Most Web transfers are short (e.g., 10 packets)
* Short HTML files or small images

— So, often there aren’t many packets in flight
— ... making fast retransmit less likely to “kick in”
— Forcing users to like “reload” more often... ©

Starting and Ending a Connection:
TCP Handshakes

Establishing a TCP Connection

A B
SYN

\)
S

CK
m
%
%‘\’

Each host tells
its ISN to the
other host.

 Three-way handshake to establish connection
— Host A sends a SYNchronize (open) to the host B
— Host B returns a SYN ACKnowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port Destination port

Sequence number

Flags: SYN

FIN Acknowledgment

RST HdrLen| o | Flags | Advertised window
PSH

URG Checksum Urgent pointer
ACK

Options (variable)

Step 1: A’s Initial SYN Packet

Flags: SYN
FIN
RST
PSH
URG
ACK

A's port B's port

A’s Initial Sequence Number

Acknowledgment

20 | 0| Flags | Advertised window

Checksum Urgent pointer

Options (variable)

A tells B it wants to open a connection...

Step 2: B’s SYN-ACK Packet

B's port A's port
B’s Initial Sequence Number
Flags: SYN ;
A’'s ISN plus 1

EIN s ISN plus
RST 20 | 0| Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK

Options (variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

34

Step 3: A's ACK of the SYN-ACK

Flags: SYN
FIN
RST
PSH
URG
ACK

A's port

B's port

Sequence number

B’s ISN plus 1
20 | 0| Flags | Advertised window
Checksum Urgent pointer

Options (variable)

A tells B it is okay to start sending...

... upon receiving this packet, B can start sending data .

5

What if the SYN Packet Gets Lost?

* Suppose the SYN packet gets lost
— Packet is lost inside the network, or
— Server rejects the packet (e.g., listen queue is full)

* Eventually, no SYN-ACK arrives

— Sender sets a timer and wait for the SYN-ACK
— ... and retransmits the SYN if needed

 How should the TCP sender set the timer?
— Sender has no idea how far away the receiver is
— Hard to guess a reasonable length of time to wait
— Some TCPs use a default of 3 or 6 seconds

SYN Loss and Web Downloads

* User clicks on a hypertext link
— Browser creates a socket and does a “connect”
— The “connect” triggers the OS to transmit a SYN

e |f the SYN is lost...
— The 3-6 seconds of delay may be very long
— The user may get impatient
— ... and click the hyperlink again, or click “reload”

e User triggers an “abort” of the “connect”
— Browser creates a new socket and does a “connect”
— Essentially, forces a faster send of a new SYN packet!
— Sometimes very effective, and the page comes fast

Tearing Down the Connection

B
4
éQs’? = \= \m X
5 %“5@/\%5%2%
‘ﬁ o0 O
A / !
>

time

* Closing (each end of) the connection

— Finish (FIN) to close and receive remaining bytes
— And other host sends a FIN ACK to acknowledge
— Reset (RST) to close and not receive remaining bytes

Sending/Receiving the FIN Packet

 Sending a FIN: close() ¢ Receiving a FIN: EOF

— Process is done sending — Process is reading data
data via the socket from the socket

— Process invokes “close()” — Eventually, the attempt
to close the socket to read returns an EOF

— Once TCP has sent all of
the outstanding bytes...

— ... then TCP sends a FIN

cereerenee e UNUSUAl event

e Client{receiver path (Smt)_ <CLOSEI
—pe. server/sender path LISTEN/- A -
: CLOSE/-
(Step 2 of the 3-way-handshake)SYNISYN+ACK LISTEN :
A :
Y Y
RSTI- : SEND/ SYN
SYN e SYN
RECEIVED s SYNISYN+ACK (simultaneous open) SENT
§ Data exchange occurs
ACKI- - SYN+ACKIACK
(Step 3 of the 3-way-handshake)
- CLOSE/FIN
CLOSE/FIN FINIACK
Active CLOSE Passive CLOSE
Y FINIACK - b
FIN WAIT 1 T CLOSING : : CLOSE WAIT
FIN+ACKACK : : ! :
: 1 |
ACKI- Vo CLOSE/FIN
: Voo
: 1 |
Y Vo
................... |
FIN WAIT 2 : TIME WAIT : I LAST ACK
FIN'ACK : :
Timeout : :
1 I e e e e e e e e e e e e

(Go back to start) _<

CONNECT/ SYN (Step 1 of the 3-way-handshake)

40

Flow Control:
TCP Sliding Window

Motivation for Sliding Window

e Stop-and-wait is inefficient
— Only one TCP segment is “in flight” at a time
— Esp. bad when delay-bandwidth product is high

* Numerical example
— 1.5 Mbps link with a 45 msec round-trip time (RTT)
* Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)

— But, sender can send at most one packet per RTT
e Assuming a segment size of 1 KB (8 Kbits)
e ... leads to 8 Kbits/seg / 45 Msec/seg =2 182 Kbps
_—'U Just one-eighth of the 1.5 Mbps link capacity

g

ﬁ%

Sliding Window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver
— ... though not too far ahead

Sending process

TCP | ast byte writte&(TCP ﬁst byte read

Last byte ACKed Next byte expected

Last byte sent Last byte received

e Window size

Receiver Buffering

— Amount that can be sent without acknowledgment

— Receiver needs to be able to store this amount of data

e Receiver advertises the window to the receiver

— Tells the receiver the amount of free space left
— ... and the sender agrees not to exceed this amount

. Window Size

<
<«

Data ACK'd

‘Ou‘rsfanding]
Un-ack'd data

&
€

Data OK
to send

\ 4

»
»

Data not OK
to send yet

TCP Header for Receiver Buffering

Source port Destination port
Sequence number
Flags: EI\I(\IN Acknowledgment
RST HdrLen| o | Flags |Advertised window
Eg:; Checksum Urgent pointer
ACK

Options (variable)

Conclusions

* Transport protocols
— Multiplexing and demultiplexing
— Checksum-based error detection
— Sequence numbers
— Retransmission
— Window-based flow control

* Next lecture
— Congestion control

