
Lecture 9 - Message Authentication Codes

Boaz Barak

March 1, 2010

Reading: Boneh-Shoup chapter 6, Sections 9.1–9.3.

Data integrity Until now we’ve only been interested in protecting secrecy of data. However, in
many cases what we care about is integrity.

Maintaining integrity is about preventing an adversary from tampering with the data that
was sent or stored by the legitimate users. For example, often people are not worried so
much about secrecy of their email, but they definitely want to be assured that the email they
received was indeed the one being sent.

Another important example is over-the-air software patches — you want to make sure that
the software patch you are installing is the right one from the software company and not by
some hacker, but there’s nothing secret about the patch.

In general, integrity is more basic than secrecy, in the sense there are many situations where
one cares about integrity and not secrecy, but not so many of the reverse. (In fact, as we saw
last week, without integrity it’s often possible to violate secrecy as well.)

Encryption and integrity Does encryption guarantee integrity? It might seem at first that yes:
if an attacker can’t read the message, how can she change it?

However, this is not the case. For example, suppose that we encrypt the message x with the
PRF-based CPA-secure scheme to 〈r, fs(r)⊕x〉. The attacker can flip the last bit of fs(r)⊕x
causing the receiver to believe the sent message was x1, . . . , xn−1, xn.

More generally, while encryption is supposed to be the digital analog of a sealed envelope,
that provides both secrecy and integrity, one should not get confused by this metaphore.
(Indeed, the closes thing to a digital analog of a sealed envelope is a CCA secure encryption,
that provides some measure of integrity as well.)

Checksums etc. A common device used for correcting errors is adding redundancy or checksums.
A simple example is adding to x as a last bit the parity of x, that is

∑
i xi (mod 2).1 When

receiving a message, the receiver checks the parity, and if the check fails, considers the message
corrupted (and if appropriate asks to resend it). This works against random errors but
not against malicious errors: the attacker can change also parity check bit. In fact, as we
saw above, the attacker can do this even if the message (including the parity check bit) is
encrypted.

Message Authentication Codes (MAC) The cryptographic primitive that we use for this is
a message authentication code (MAC). A message authentication code (MAC) consists of

1Sometimes this is generalized to more bits, say, parity mod 232.

1

two algorithms (Sign,Ver) (for signing and verifying). There is a shared key k between the
signer and the verifier. The sender of a message x computes s = Signk(x), s is often called a
signature or a tag. Then, it sends (x, s) to the receiver. The receiver accepts the pair (x, s)
as valid only if Verk(x, s) = 1.

Security for MACs We define a MAC secure if it withstands a chosen message attack. (Notation:
n - key length, m - message length, t - tag length)

Definition 1 (CMA secure MAC). A pair of algorithms (Sign,Ver) (with Sign : {0, 1}n ×
{0, 1}m → {0, 1}t, Ver : {0, 1}n × {0, 1}m × {0, 1}t → {0, 1}) is a (T, ε)-CMA-secure MAC if:

Validity For every x, k, Verk(x,Signk(x)) = 1.

Security For every T -time Adv, consider the following experiment:

• Choose k ←R {0, 1}n

• Give adversary access to black boxes for Signk(·) and Verk(·).
• Adversary wins if it comes up with a pair 〈x′, s′〉 such that (a) x′ is not one of the

messages that the adversary gave to the black box Signk(·) and (b) Verk(x′, s′) = 1.

Then the probability Adv wins is at most ε.

Naturally, we define (Sign,Ver) to be CMA-secure if for every n it is (T (n), ε(n))-CMA-secure
for super-polynomial T, ε. In other words, there is no polynomial-time Adv that succeeds with
polynomial probability to break it.

Example As discussed above, the following are not MACs:

• A CPA-secure encryption scheme.

• A cyclic redundancy code (CRC)

Construction for a message authentication code. We prove the following theorem:

Theorem 1. Let {fk} be a PRF. Then the following is a MAC:

• Signk(x) = fk(x).

• Verk(x, s) = 1 iff fk(x) = s.

Proof. We prove this in the typical way we prove constructions using PRFs are secure: we
define an ideal MAC scheme that uses a truly random function, prove it secure, and then
derive security for our real scheme.

Proof of security for ideal scheme. Let A be an adversary running a chosen-message
attack against the ideal scheme. At the end of the attack it outputs a string x′ that was not
asked by it before from the signing oracle and some supposed tag t′. Since this is a random
function, we can think of the oracle at this point choosing the tag t for x′ at random and we
have that Pr[t = t′] = 2−n.

Note that this MAC has the property that both signing and verification are deterministic,
and moreover for every message x there is a unique tag that the verification accept. We call
this the unique tag property— most of if not all MACs we’ll consider have this technical
property and it’s sometime useful.

2

Using Authentication to get CCA security As we saw last time, CPA secure encryption is
not always strong enough. For this purpose we defined CCA security as follows:

Definition 2 (CCA security). An encryption (E,D) is said to be (T, ε)-CCA secure if it’s
valid (Dk(Ek(x)) = x) and for every T -time A if we consider the following game:

• Sender and receiver choose shared k ←R {0, 1}n.

• A gets access to black boxes for Ek(·) and Dk(·).
• A chooses x1, x2.

• Sender chooses i←R {1, 2} and gives A y = Ek(xi).

• A gets more access to black boxes for Ek(·) and Dk(·) but is restricted not to ask y to
the decryption box. More formally, A gets access to the following function D′k(·) instead
of Dk(·)

D′k(y′) =

{
Dk(y′) y′ 6= y

⊥ y′ = y

(⊥ is a symbol that signifies “failure” or “invalid input”)

• A outputs j ∈ {1, 2}.

A is successful if j = i, the scheme is (T, ε) secure if the probability that A is successful is at
most 1

2 + ε.

Order of Encryption and Authentication A natural approach to get CCA security is to add
authentication. There are three natural constructions:

• Encrypt and then Authenticate (EtA): Compute y = Ek(x) and ty = Signk′(y) and send
(y, ty). (IPSec-style)

• Authenticate and then Encrypt (AtE): Compute tx = Signk′(x) and then Ek(tx). (SSL
style)

• Encrypt and Authenticate (E& A): Compute y = Ek(x) and tx = Signk′(x) and send
(y, tx). (SSH style)

(Use only CRC for authentication is WEP-style) Note that in all these methods we use
independent keys for encryption and authentication.

It turns out that generically there is only one right choice.

Theorem 2.

1. If (E,D) is CPA-secure and (Sign,Ver) is CMA-secure with unique tags property then
the the EtA protocol gives a CCA secure encryption scheme.

2. There is a CPA-secure encryption such that for every CMA-secure MAC the AtE protocol
is not a CCA secure encryption scheme.

3. There is a CMA-secure MAC (with unique tags) such that for every CPA-secure encryp-
tion, the A& E protocol is not even a CPA secure encryption scheme.

3

Note: This does not by itself mean that, say, SSL is not secure. But it does mean that it is
not generically secure. That is, the SSL protocol relies on specific (and not explicitly stated)
properties of the encryption scheme used.

This theorem and its proof can be found in Hugo Krawczyk’s CRYPTO 2001 paper “The
order of encryption and authentication for protecting communications (Or: how secure is
SSL?)”, see http://eprint.iacr.org/2001/045. We now sketch the proof:

Item 1: EtA is CCA secure This is basically the proof we saw last time, where we used a PRF
to convert a CPA secure encryption into a CCA secure encryption. By examining the proof,
one can see that all we really used is the fact that a PRF is a MAC to ensure that the
decryption box is useless for the adversary. (We also used the unique-tags property, but EtA
will give a meaningful notion close to CCA security, namely authenticated encryption, even
if the MAC doesn’t have the unique-tags property.)

Item 3: E&A is not generally secure The idea is that a MAC does not have to preserve se-
crecy of the message.

Item 2: AtE is not generically secure We’ll use “Sushant’s cryptosystem”. Take any CPA
secure encryption (E,D) for one bit messages. Then you can construct from it a CPA-secure
encryption for m bit messages by letting E′k(x1 · · ·xn) = Ek(x1)Ek(x2) · · ·Ek(xn) (exercise).
Now we can assume that the input is encoded so that every string ends with “0”. This means
that given an encryption E′(x), we can by replacing the ith block with a copy of the m+ 1th

block convert it to an encryption of x1 · · ·xi−10xi+1 · · ·xm. (We can also assume the string
ends with 01 and so also change the ith bit to 1, moreover, for this proof the attacker can
choose to use messages that only end with 0 or 01 so we don’t even need this assumption.)

Now suppose we use E′ in the AtE setting and so we get an encryption of the form E′(x,Sign(x)).
If we have access to a decryption box, we change the ith bit of x to 0, and see if the MAC still
passes verification. If it does, then we know that the original bit was 0, otherwise we know
that it was 1. This allows to launch a successful CCA attack.

(In fact, there was a successful attack against SSL of similar nature, using knowledge of
whether or not the Mac failed.)

Input length extension We showed how to construct a PRF from every pseudorandom genera-
tor, but Practical constructions of PRFs come from block ciphers or similar functions, that
have a fixed and small block size, say 128 bits. On the other hand, the messages we want
to sign — say programs — are often very large (megabytes or even gigabytes). So, given a
pseudorandom function fk : {0, 1}n → {0, 1}n, (e.g. with n = 128) we’d want to transform it
into a PRF gk : {0, 1}∗ → {0, 1}n that can take as inputs strings of arbitrary length. Some
desired properties for such a transformation are:

1. Security: obviously we want {gk} to be PRF if {fk} was. In fact for practical applications
we’d want as tight as possible reduction relating the security of {gk} to the security of
{fk}.

2. Efficiency: ideally the transformation should be very efficient. One goal is to minimize
the number of invocations of fk. For starters, we might want to ensure that we use
roughly |x|/n invocations to evaluate gk on x. (In fact, you might even be able to get
away with one invocation, as we’ll see next week.)

4

3. Secret key length: you want the secret key of g to be not much longer than the secret
key of f

4. Streaming: for very long messages, you often get them one block at a time, and you
might not even know the length of the message until you are done. So you should be
able to compute gk(x) even if you get only streaming access to x.

5. Parallelism: sometimes you might want to use hardware parallelism to compute the
MAC on a large message, so you want to be able to ensure that if you have ` CPU’s
working on the MAC on x, you can actually compute it ` times faster.

6. Incremental: sometimes you might want the property that if you already computed a
MAC t of a long message x, and then you modify only one block of x to get x′, you don’t
have to do a long computation to compute the MAC on x′.

(There could be other requirements depending on the application.)

Achieving input length extension There is a general approach of converting a PRF fk : {0, 1}n →
{0, 1}n into a PRF mapping {0, 1}∗ to {0, 1}n in two stages:

1. Blockwise function: first transform {fk} into a PRF that works only on inputs of that
are integer multiple of n.

2. General function: use padding to get rid of the requirement that the input length is an
integer multiple of n.

The Boneh-Shoup book describes several different approaches used to achieve these goals.
We’ll focus on one elegant solution that combines two steps: PMAC to solve the first (and
main) step, and CMAC to solve the second step.

We remark that often there is an intermediate step, in which one construct a function that
is blockwise and also prefix free. That is, security is only guaranteed if the adversary never
makes two queries such that one is a prefix of the other. The CMAC trick can be used to get
rid of that condition as well.

PMAC Here’s the PMAC construction (we’ll actually work with a simplified variant very close
to PMAC0 described in Boneh-Shoup, but PMAC is basically just an optimized variant of
PMAC0). For simplicity we think that fk maps Zp = {0, . . . , p − 1} to Zp, where p is some
prime. (We can think of p as being very close to 2n, say 2n − n, and so we can embed Zp in
{0, 1}n without much loss in efficiency.2) For x = x1, . . . , x` where xi ∈ Zp, we define

gk,k′,r = fk′(
∑̀
i=1

fk(xi + ir))

where k, k′ are random keys for the PRF fk and r is random in Zp.

We remark that all we’ll use about Zp is that it’s a field that has multiplication and addi-
tion, and everything works the same in the finite field GF (2n) of 2n elements. The latter
field is more convenient for current computer architecture, and in fact in that field addition
corresponds to XOR. The main difference between PMAC and PMAC0 is that PMAC uses
GF (2n)

2One subtle point is how do we ensure the output of the PRF is in Zp, but since in a random function the
probability that a random n bit string, interpreted as a number, is larger than 2n − n is negligible, we can assume
this almost never happens for the PRF as well and treat this case arbitrarily.

5

Theorem 3. If fk was a PRF then gk,k,r is a PRF.

The heart of the proof is obtained by showing that the adversary has only negligible proba-
bility to succeed in finding two inputs x = x1 · · ·x` and x′ = x′1 · · ·x′`′ such that

∑̀
i=1

fk(xi + ir) =

`′∑
i=1

fk(x′i + ir)

CMAC To get a bitwise MAC we need to use some padding to pad up the message to an integer
multiple of n. The simplest padding is just to pad a message that is not of length an integer
multiple of n with zeroes but although this is sometimes used, this is insecure (can you see
why?). A secure padding is to add to every message a bit 1 at the end, and then pad it with
zeroes. But this means that if you have a message that is exactly one block length, you’ll
need two blocks to encode it— a 100% overhead. The CMAC is a clever trick to get rid of
this problem by using the following randomized padding scheme (this is again a simplified
variant of CMAC):

If x is of length an integer multiple of n then do nothing. Otherwise, add 1 to x, pad it
with zeroes, and xor a random secret r ∈ {0, 1}n to the last block. One can show that the
probability that an adversary finds two messages whose padding is the same is negligible.

6

