
Lecture 7 - CCA security

Boaz Barak

February 24, 2010

Reading BS Section 9.3, KL Section 3.7 (pages 103–104), Chapter 4 (al-
though we follow a somewhat different order than both books).

The online shopping problem Let’s abstract the online shopping prob-
lem as follows: Alice and Bob share a key k, and Alice also has a credit
card number c which Bob can validate against a database. (For simplic-
ity, assume that there is only one valid credit card, and so the validation
is simply checking that the card equals c.)

Consider the following protocol for an online transaction:

Protocol 1

Alice Bob
(k, c) (k, c)

y = Ek(c)−−−−−−→
Check Dk(y) = c

Either:
OK←−−
or

GTH←−−−

Security What does it mean for this protocol to be secure. A security defi-
nition always has three components:

• The capabilities of the adversary: we’ll always model it as a polynomial-
time algorithm.

• The attack model: in this case we’ll start with a passive attack - Eve
just sits on the line and listens to polynomially many executions of
Protocol 1 (all using the same key and credit card).

• The definition of a break / “win” of the adversary: We’ll make the fol-
lowing definition: Assume that k ←R {0, 1}n and c←R [108]. We say

1



that the protocol is secure if for every poly-time Eve, poly-bounded
ε and large enough n,

Pr[Eve guesses c ] ≤ 10−8 + ε(n)

We say that a protocol satisfying the above definition is a passively secure
authentication protocol

Theorem 1 If (E,D) is CPA-secure then Protocol 1 is a passively secure
authentication protocol.

Proof We’ll do the proof by reduction: assume that A can break the passive
security of Protocol 1, we’ll build an adversary B that can break the
CPA security of the encryption scheme.

In an actual attack, A sees T repetitions of the following messages:

Ek(c)−−−→
OK←−−

(of course each occurrence of Ek(c) uses fresh randomness)

Consider the following “mental experiment” we run the attack of A, but
instead choose a junk message J ←R {0, 1}n (e.g., J = 0n) and send an
encryption of J instead of c. That is, A will see T repetitions of:

Ek(J)
−−−→
OK←−−

Clearly in this case A gets no information on c and so will guess it suc-
cessfully with probability at most 10−8. Hence under our assumption
A can distinguish between the two cases with advantage ε. Using the
hybrid method it follows that there is an i ∈ [T ] such that A can dis-
tinguish between the case that the first i messages are encryptions of c
and the last T − i messages are encryption of J and the case that the
first i+ 1 messages are encryptions of c and the last T − i− 1 messages
are encryptions of J . Specifically, if we let p be the probability that
A guesses correctly in the first case then in the second case A guesses
correctly with probability at least p+ ε/T .

We can now mount a CPA attack against the encryption scheme. B will
do the following:

1. Choose a number c←R [108], J ←R {0, 1}n.
2. Ask for i encryptions of c.

2



3. Choose x0 = J, x1 = c and give x0, x1 to the sender to obtain y =
Ek(xi) for i←R {0, 1}.

4. Ask for T − i− 1 encryptions of J .

5. Feed all the encryptions plus “OK” messages to A and get a guess g
from A.

6. If g = c then output 1; otherwise output a random bit in {0, 1}.

We have that if i = 0 then we output 1 with probability p + (1− p)12 =
1
2 + p

2 , while if i = 1 we output 1 with probability at least 1
2 + p

+
ε
2T . Hence,

the probability we make the correct guess is at least

1
2

(
1
2 + p

2 + ε
2T

)
+ 1

2

(
1− 1

2 −
p
2

)
= 1

2 + ε
4T

Active attacks In an active attack we allow Eve to the drop, insert and
modify messages between Alice and Bob. (Of course, she can completely
cut off the communication between them, but then she won’t learn the
credit card number.) Alice and Bob can always check that messages are
of the proper length etc.., and so we’ll assume that Eve only sends well
formed messages (though this is a huge issue in practice!).

Does the proof go through? To simulate Eve in this case, we’d like to
change Step 5 above to the following: For every generated encryption yi,
feed yi to A and obtain the modified version y′i. Then, check if y′i is an
encryption of c and if so, feed “OK” to A; otherwise feed it with GTH.
But of course, we cannot check if y′i is an encryption of c in the course
of running an attack on the encryption scheme!

Is it just the proof? It seems “obvious” that the problem is with the proof
method and that Protocol 1 is secure even against active attacks - after
all how can Eve guess the credit card when it’s never sent in the clear??

Counterexample It turns out the intuition is false - there is a CPA secure
encryption which makes Protocol 1 insecure against active attacks! The
counterexample below may seem contrived (and it is) but it illustrates
an idea that was used in actual attacks on real-life protocols (specifically
SSL V3.0).

Consider the unary encoding of decimal digits as bit strings: the digit
i is encoded a string of 11 bits starting with i zeros and then a 1. To
be more specific, the encoding algorithm will encode i as 0i111−i but the

3



decoding algorithm will only check for existence of a single 1 following
the first i zeroes.

Now suppose that the credit card number c is encoded in this form to a
string ĉ, and then we use the PRF-based CPA-secure encryption we saw
in class (Ek(x) = (r, fk(r)⊕ x) ) to encrypt ĉ.

The crucial observation is that if Eve gets a ciphertext Ek(x) = (r, y)
even without knowing what is the plaintext, she can still flip the ith bit
of y and that will change the ciphertext to the encryption of x with its
ith bit flipped.

This means that Eve to guess a particular digit of the card, Eve can try
to flip the last location in the encoding of that digit, then one before
last, and so on. If i is the first location where Eve got a “GTH” message
then the digit was i− 1.

Thus, after at most 88 executions Eve would be able to learn the entire
credit card number.

On the importance of contrived counterexamples: Why is this mean-
ingful? On a first encounter a natural reaction to such a counterexample
is that this is cheating. This is an obviously contrived encryption scheme
which no designer in his right mind would use in a login protocol. How
can such an example teach us something about security? There are sev-
eral answers to this concern (in some sense these are all different ways
to state the same answer):

1. Although this example is contrived, its only a simplified presenta-
tion of attacks which worked for real-world protocols such as WEP,
IPSEC, SSH etc.

2. Such examples teach us what we need to assume about the under-
lying components that we use. If there is a credit-card payment
protocol that uses an encryption this example tells us that if the
protocol is secure at all, its security is not based solely on the fact
that the encryption scheme is CPA secure, but rather the protocol
needs some additional property from the encryption scheme. This
is important because even if the protocol is secure now, at some fu-
ture date someone might decide to use a different encryption scheme
for the protocol, and so it is crucial to explicitly state the security
requirements from the encryption scheme used.

3. The fact that this example does not immediately imply that protocol
X is insecure does not mean that protocol X is secure . The onus

4



is always on the protocol designer to demonstrate that the protocol
is secure. If the designer claims that his login protocol is secure, he
should state under what conditions on the encryption scheme this
will be the case.

Stronger notion of encryption: It turns out there is a stronger notion of
encryption scheme, that suffices to imply security of Protocol 1 and in
many other places. This notion might seem “crazy strong” but it turns
out that:

• It is needed for many applications.

• There are pretty efficient constructions conjectured to satisfy it.

Chosen ciphertext attack The definition of chosen ciphertext attack is a
variation of chosen plaintext attack but this time the attacker is given
oracle access even to the decryption box!

• Adversary gets oracle access to x 7→ Ek(x) and y 7→ Dk(y).

• Adversary chooses x0, x1.

• Sender chooses k ←R {0, 1}n, i ←R {0, 1} and sends y∗ = Ek(xi) to
the adversary.

• Adversary gets access to x 7→ Ek(x) and y 7→ Dk(y) with one restric-
tion - it cannot ask the decryiption box the exact string y∗.

• Adversary comes up with a guess j. She wins if i = j.

(E,D) is CCA-secure if for every poly Adv, poly-bounded ε : N → [0, 1],
and large enough n, Pr[Adv wins ] ≤ 1/2 + ε(n).

Theorem 2 If (E,D) is CCA-secure then Protocol 1 is an actively secure
authentication protocol.

Proof We modify the proof of Theorem 1 in the following way: first, we
assume that Bob sends an OK message if the encryption is either of c or
the junk message J . We can do that because the probability that Eve
sends an encryption of the junk message J is at most T

2n .

Then, we can simulate Eve - in Step 5 we do the following: for every
generated encryption yi, feed yi to A and obtain the modified version y′i.
Then, if y′i = y∗ then feed “OK” to A; otherwise, ask the decryption box
to decrypt y′i and answer OK iff it decrypts to either c or J .

An example of a non CCA secure encryption The basic CPA secure
encryption we showed in class: given PRFs {fk}, encrypt x by choosing
r ←R {0, 1}n and outputting (r, fk(x)⊕ r) is not CCA secure.

5



Construction of CCA secure encryption scheme The following encryp-
tion scheme is CCA secure: let {pk} be a collection of pseudorandom
permutation mapping {0, 1}3n to {0, 1}3n:

• To encrypt x ∈ {0, 1}n do the following: choose r ←R {0, 1}n, and
send pk(x‖r‖0n) (were ‖ denotes concatenation).

• To decrypt y ∈ {0, 1}3n, compute x‖r‖w = p−1k (y). if w 6= 0n then
output ⊥. Otherwise, output x.

Proving that this is CCA secure is left as exercise.

Another construction of a CCA secure encryption scheme Here’s an-
other construction: Suppose that (E,D) is CPA secure, and let {fk} be
a collection of PRF’s. The following scheme (E ′, D′) is a CCA secure
encryption:

Key (k, k′) where k is a key for (E,D) and k′ is a key for the PRF
collection.

Encrypt E ′k,k′(x) = (y, t) where y = Ek(x) and t = fk′(y).

Decrypt Dk,k′(y, t) = ⊥ if fk′(y) 6= t and Dk(y) otherwise.

Exercise: prove that this is CCA secure. Is it still CCA secure even if
you choose the same k′ = k?

Something to think about Is there a CPA secure encryption where an
active Eve can set every bit in the encrypted to text to an arbitrary
value of her choice + flip every bit she wants to?

6


