
Lecture 21 — Homomorphic Encryption 2: Construction of “mildly

homomorphic” encryption.

Boaz Barak

April 19, 2010

Reading: Gentry’s thesis, paper by van Dijk, Gentry, Halevi and Vaikuntanathan.

Notation: If x ∈ R, then bxe denotes the nearest integer to x (say, breaking ties downward), bxc
denotes the nearest integer smaller than x and dxe denotes the nearest integer larger than x.

Constructing homomorphic encryption We saw in the last couple of lectures that homomor-
phic encryptions can be used to do wonderful things, but the same holds for perpetual motion
machines, cold fusion, unicorns, etc...

So, the question whether we can actually construct such schemes. Since the question was
raised in 1978, there have been no significant candidate for a homomorphic encryption scheme.
This was changed last year, when Gentry gave the first such construction. The construction
relies on somewhat non-standard, but still rather reasonable assumptions. Also, as mentioned,
it is still not practical, requiring at least k8 operation to achieve 2k security. Hopefully, with
time we will see improved constructions, using more standard assumptions and more efficient.
We will see a close variant of Gentry’s scheme now. We remark that all the applications we
saw (zero knowledge, multi-party computation, private information retrieval) have alternative
constructions that utilize much more standard assumptions.

Plan We’ll start by showing a “mildly” homomorphic encryption scheme, and then modify it
to boost it to a fully homomorphic encryption next lecture. Since the definition of mildly
homomorphic is somewhat unnatural, I’ll first show the encryption scheme, and only later
discuss the definition it satisfies. I note that initially we will construct a private key encryption
scheme. We will then note that a fully homomorphic private key encryption easily gives rise
to such a public key scheme (exercise!).

Noisy gcd. Consider the following question: you’re given X1, . . . , Xpoly(n) all 100n bit strings, and
told that either: (I) all of them are random and independent in [N] = [2100n] or (II) for all
i, Xi = QiP , where P is chosen once at random in [2n] and Qi are chosen independently and
randomly in {1..bN/P c}. How can you distinguish between the two cases?

Now suppose that we change case (II so that Xi = QiP +Ei where Ei is chosen independently
at random in [2

√
n].

The noisy gcd conjecture is that now (I) and (II) are computationally indistinguishable. I’ll
call this LDN for “learning divisor with noise”.1 That is, in the LDN assumption, you are

1I phrased LDN as a decision problem, but in the paper van Dyck et al show this is equivalent to the search
problem of actually finding the divisor.

1

given either a box that gives you random numbers in [N] or numbers of the form QP + E
where P is some secret random number in [2n] = N1/10 and E is random in [2

√
n].

A useful variant. It turns out that LDN is equivalent to the case that P is odd and Ei is even,
in which case we just write Xi = QiP + 2Ei. This is left as an exercise. One simple claim
that is used is the following:

Shifting interval claim: If I is an interval, then UI is within |a|/|I| statistical distance to
UI+a where US denotes the uniform distribution on the set S, and I + a denotes the interval
shifted by a.

Does LDN imply that (I) and (II) are indistinguishable even when both P and Ei are even?

Increasing noise only helps The following observation will be of use: if LDN is true with noise
magnitude 2

√
n, it’s true with any magnitude in [2

√
n, 2n]. (In fact, in the latter case the two

distributions become statistically indistinguishable.)

Basic cryptosystem We now construct a CPA-secure private key encryption (Enc,Dec) based on
LDN:

Key P ←R [2n]. We denote N = 2100n.

Encryption To encrypt the bit b ∈ {0, 1}, choose Q ←R {1..bN/Qc}, E ←R [2
√
n], output

X = QP + 2E + b.

Decryption To decrypt X, output (X (mod P)) (mod 2).

Correctness Since E � P , QP + 2E + b (mod P) = 2E + b, and then taking (mod 2) we get b.

Security We need to show Enc(0) ≈ Enc(1), which will follow by showing in both cases they are in-
distinguishable from U[N]. Indeed, under our assumptions all the ciphertexts X1, . . . , Xpoly(n)

that the adversary obtains in a CPA attack are of the form Xi = QiP + 2Ei or Xi =
QiP + 2Ei + 1, but since QiP + 2Ei ≈ U[N], then also the same holds for QiP + 2Ei + 1 via
the shifting interval claim.

Homomorphic In what sense is this system homomorphic? We claim that it satisfies the following:
given X,X ′ that are encryptions of b, b′ respectively, we can manufacture (without access to
the secret key) ciphertexts X⊕ and X× such that X⊕ will decrypt to b ⊕ b′ and X× will
decrypt to b · b′.
This is very simple— just multiply or add the ciphertexts!

Write X = QP + 2E + b and X ′ = Q′P + 2E′ + b′ then

X + X ′ = (Q + Q′)P + 2(E + E′) + (b + b′)

and so, since E + E′ � P , it’s clear that (X + X ′ (mod P)) (mod 2) = b + b′ (mod 2).

now

X ·X ′ = QQ′P 2 + 2E′QP + b′QP + 2EQ′P + 4EE′ + 2Eb′ + bQ′P + 2bE′ + bb′

lets group together all the terms that are multiples of P , and then the remaining terms that
are definitely even, to get

X ·X ′ = (QQ′P + 2E′Q + b′Q + 2EQ + bQ′)P + 2(2EE′ + Eb′ + bE′) + bb′

2

now we have 2EE′ + Eb′ + bE′ ≤ 3 · 22
√
n ≤ 23

√
n � P and so we get (X · X ′ (mod P))

(mod 2) = bb′ (mod 2).

Are we there yet? This encryption scheme guarantees that we can transform ciphertexts cor-
responding to b and b′ into ciphertexts corresponding to b ⊕ b′ or bb′ respectively, and by
combining them one can easily get a ciphertext corresponding to b ∧ b′, so why isn’t this a
fully homomorphic encryption scheme?

The answer is that while, for example, the ciphertext X× will decrypt to bb′, it will not be
statistically close to a standard encryption of bb′. In fact, it will not even have the same
length! Indeed, X× will be a number of size roughly N2.

This also shows that there is a limit to how much we can continue applying these ⊕ and ×
operation. This limit comes into play in both the size of the ciphertexts and the magnitude
of the noise, and in both cases the × operation is much more expensive than the ⊕, and we
can only compose it with itself a logarithmic number of times:

• Size of ciphertext If X,X ′ were of m bits size, then X⊕ will have size about m+1, while
X× will have size 2m.

• Magnitude of noise if X,X ′ had magnitude of noise at most E, then X⊕ will have
magnitude of noise at most 2E, while X× will have magnitude of noise at most 3E2 < E3.

Suppose we compose these operations in a polynomial size circuit with ⊕ and × gates, where
we allow arbitrary fan-in for the ⊕ gates and fan-in two for the × gates. If the circuit has
depth at most log n/10 then we’ll be OK: let Ei be the magnitude of noise at level i, then
E1 ≤ 2

√
n and Ei ≤ E3

i−1 for all i. Similarly, let si be the number of bits of the ciphertexts
at level i, then s1 = 100n and si ≤ 2si−1 for all i.

So we can evaluate circuits up to that size. But as mentioned the guarantee is much weaker
than what we wanted— all we know is that the decryption will succeed, and this is in some
sense trivial (see exercise).

Recap of basic scheme Unfortunately we will now have to complicate our scheme somewhat, in
preparation for the fully homomorphic scheme.

Reducing ciphertext size The fact that the ciphertexts grow (especially with multiplication)
makes the scheme much less efficient, and also as mentioned above makes it trivial in some
sense. We now want to keep all the ciphertexts at reasonable size.

First attempt As a first attempt - lets reduce all numbers modulo N . Does this work??

Second attempt Lets assume the encryption algorithm also outputs some number N ′ close to N
such that N ′ = QP +E (for example, trying many such random numbers and outputting the
largest one — this does not give any information about P since they are indistinguishable
from random numbers in [N]). I claim that in this case reducing modulo N ′ will work for
addition.

Actual construction We now turn to the actual construction, however to do so we need to
strengthen the LDN assumption. We assume now that the adversary has a polynomial number
of interactions with a box to which he can give any number N ≥ 2100n of his choice and gets
in case (I) a random number in [N], and in case (II) a number of the form QP +E where P ,

3

as before was chosen once for the all interactions at random from [2n], Q is chosen at random
from 1 to bN/P c and E is chosen at random in [−2n

0.2
,+2n

0.2
].2

Our encryption scheme will now be the following:

Key P ←R [2n].

Public parameters (This is used by the EVAL procedures, one can also think of these as
being appended to each encryption.) Choose N0, . . . , N1000n s.t. for all i, Ni = QiPi+Ei

with |Ei| ≤ 2
√
n and N0 ∈ [2100n−1, 2100n], Ni ∈ [1.5Ni−1, 2Ni). For every U , a number

of the form QP + E in the interval [1.5U, 2U] can be chosen by taking a random Q ∈
{1..b2U/P c}, and E ∈ [−2

√
n,+2

√
n] and outputting QP +E if QP +E is in this interval

(which will happen with probability about 3/4), or otherwise trying again.

Encryption To encrypt the bit b ∈ {0, 1}, choose Q ←R bN0/Qc, E ←R [2
√
n], output

X = QP + 2E + b.

Decryption To decrypt X, output (X + 2bP/4c (mod P)) (mod 2). (The addition of
2bP/4c it to handle negative noise, see below.)

Add Given X,X ′ we define ADD(X,X ′) as X + X ′ (mod N0).

Mult Given X,X ′ we compute MULT (X,X ′) as follows: let Y1000n+1 = X ·X ′, and for all
i let Yi = Yi+1 (mod Ni). We output Y0.

Analysis Clearly the output of Enc, ADD and MULT is always a number in [N0], so now we want
to argue that the system is secure, and decryption will succeed on both outputs generated by
encryption and by Add and Mult.

Security All operations are done with access to the “box” that outputs values close to multiples
of P . If that box is replaced with the box that on input N outputs a random number in [N],
then the encryptions of 0 and of 1 are statistically indistinguishable.

Decryption succeeds on plaintext Since 2bp/4c is an even number of size about P/2 we have
the guarantee that 2bP/4c+ 2E + b ∈ (0, P) for all b ∈ {0, 1} and E such that |E| < P/5 and
2bP/4c+ 2E + b (mod 2) = b for all b ∈ {0, 1}. Hence

(QP + 2bP/4c+ 2E + b (mod P)) (mod 2) = 2bP/4c+ 2E + b (mod 2) = b

Decryption succeeds on ADD, MULT This follows from the following claim:

Claim 1. Let N = QP + E and let X = Q′P ′ + E′ be such that X ≤ cN . Then X
(mod N) = Q′′P + E′′ such that |E′′| ≤ |E′|+ c|E|.

Proof by picture.

Can we handle arbitrary circuits??? Yes - if the decryption algorithm can be written as a
circuit with depth less than log n/10.

Re-randomization

2We make the assumption slightly stronger by thinking of smaller noise, this is just for simplification of notation
later on, and we could have stayed with 2

√
n. Considering negative noise is also not a major issue, but will help us

slightly in the future.

4

