
Lectures 11–12 - One Way Permutations, Goldreich Levin

Theorem, Commitments

Boaz Barak

March 10, 2010

From time immemorial, humanity has gotten frequent, often cruel, reminders that many
things are easier to do than to reverse. Leonid Levin

Reading Arora Barak chapter 9, Trevisan’s lecture notes, Katz-Lindell Section 6.3 (Goldreich-
Levin proof, definition of hardcore bits).

Quick review of probability Union bound, Chernoff bound, Chebychev bound.

Minimizing assumptions Up to now, we always assumed the following PRG Axiom: There
exists a pseudorandom generator mapping {0, 1}n to {0, 1}n+1.

In other words, we believe that there is an algorithm G such that the following task cannot
be done: distinguish G(Un) from Un+1.

Since we still don’t have a proof that this cannot be done, our only evidence that a task is
hard is that many people tried many approaches to solve it and didn’t succeed.

The problem is that while people have been studying algorithms in one form or another for
thousands of years, there hasn’t been as much attention devoted to distinguishing the output
of a function from the uniform distribution. Therefore, we want to have an assumption that
a more natural task, such as computing a function, is hard to do.

Def We say that a function g : {0, 1}∗ → {0, 1}∗ is hard to compute (in the average case) if for
every polynomial-time A, polynomially-bounded ε and large enough n

Pr
x←R{0,1}n

[A(x) = g(x)] < ε(n)

Claim: There exists a hard to compute function g such that g maps {0, 1}n to {0, 1}n for
every n.

Proof: Just pick g at random. For every particular 2
√
n-time algorithm A, the expected

number of inputs on which A(x) = g(x) is one, and the probability that A computes g
successfully on an at least 2−n/10 fraction of the total 2n inputs can be shown to be less than
2−2

−n/2
. But a 2

√
n algorithm can be described by about 2

√
n � 2n/2 bits and so the total

number of such algorithms is much smaller than 22
n/2

.

One-way permutation Of course the mere existence of a hard function is not useful for cryptog-
raphy. But the following assumption will be useful:

The OWP Axiom: There exists a polynomial-time function f : {0, 1}∗ → {0, 1}∗ such that
for every n, f is a permutation over {0, 1}n (i.e., maps {0, 1}n to {0, 1}n in a one-to-one and

1



onto way) and such that the function g = f−1 is hard to compute. Such an f is called a
one-way permutation.

An equivalent condition is that for every poly-time A, poly-bounded ε and large enough n

Pr
x←R{0,1}n

[A(f(x)) = x] < ε(n)

(can you see why these are equivalent?)

We will prove the following theorem:

Theorem 1. The OWP Axiom implies the PRG Axiom.

This places the PRG Axiom on a much more solid foundation, since (as alluded by Levin’s
quote), this is the kind of task people have tried and failed to do for centuries. (Note that in
cryptography we actually put our failures to good use!)

One way functions It is known that the PRG Axiom is implied by an even weaker assumption -
the existence of a one way function, defined as a polynomial-time function f (not necessarily
a permutation) such that for every poly-time A, poly-bounded ε and large enough n,

Pr
x←R{0,1}n

[A(f(x)) = w s.t. f(w) = f(x)] ≤ ε(n)

The assumption that one-way functions exist is minimal for many cryptographic tasks. It
can be shown that the existence of pseudorandom generators, encryptions with key shorter
than message, message authentication code implies the existence of one-way functions.

Proof of Theorem 1 Theorem 1 will follow from the following two theorems:

Theorem 2 (Yao’s Theorem). A distribution X over {0, 1}m is pseudorandom if and only if it
is unpredictable, where the latter means that for every i ∈ [m], poly-time A and poly-bounded
ε,

Pr
x←RX

[A(x1, . . . , xi−1) = xi] ≤ 1/2 + ε(n)

Theorem 3 (Goldreich-Levin). Let f be a one-way permutation. Then the following distri-
bution is unpredictable:

f(x), r, 〈x, r〉

where x, r ←R {0, 1}n and 〈x, r〉 def
=
∑
xiri (mod 2).

Theorems 2 and 3 together imply that if f is a one-way permutation then the function
x, r 7→ f(x), r, 〈x, r〉 is a pseudorandom generator mapping {0, 1}2n to {0, 1}2n+1.

Proof of Theorem 2 One direction (pseudorandomness implies unpredictability) is easy and left
as an exercise.

For the other direction, to show that if X is unpredictable then it is pseudorandom, we define
the following m+ 1 hybrid distributions: H i is the first i bits of X concatenated with m− i
uniform random bits.

It suffices to prove that for every i, H i−1 ≈ H i. We do this by reduction using the following
claim:

2



Claim 4. Suppose that there is an algorithm D such that∣∣Pr[D(H i) = 1]− Pr[D(H i−1) = 1]
∣∣ ≥ ε (1)

then, there is an algorithm P with almost the same running time, such that

Pr
x←RX

[P (x1, . . . , xi−1) = xi] ≥ 1/2 + ε

The claim clearly proves the theorem (exercise).

Proof of Claim 4. We can drop without loss of generality the absolute value in (1), since if D
satisfies this condition with a negative number inside the absolute value, then D will satisfy
it with a positive number.

The algorithm P will do the following on input x1, . . . , xi−1:

1. Guess a value b for xi, and choose also m− i random bits yi+1, . . . , ym.

2. Let z = D(x1, . . . , xi−1, b, yi+1, . . . , ym).

3. If z = 1 then output b; otherwise, output 1− b.

Analysis: The intuition behind the analysis is that if we guessed correctly then we’re in H i

situation, where we’re more likely to get the z = 1 output.

The actual analysis is the following:

Let p be the probability that D(H i−1) = 1 and p+ ε the probability that D(H i) = 1.

We know that Pr[z = 1] = p.

On the other hand we know that Pr[z = 1|b = xi] ≥ p+ ε.

This means that

p = Pr[z = 1] = 1
2 Pr[z = 1|b = xi] + 1

2 Pr[z = 1|b = 1− xi]

implying that Pr[z = 1|b = (1− xi)] ≤ p− ε.
So, the probability we output a correct answer is:

1
2 Pr[z = 1|b = xi] + 1

2(1− Pr[z = 1|b = 1− xi]) ≥ 1
2(p+ ε) + 1

2(1− p+ ε) = 1
2 + ε

Proof of Theorem 3 Theorem 3 will follow from the following lemma (exercise):

Lemma 5. There is a poly(n, 1/ε)-time algorithm that given oracle access to an oracle A
that computes the function r 7→ 〈x, r〉 with probability 1/2 + ε over the choice of r, outputs x

with probability at least
(

ε
100n

)2
.

Proof of Lemma 5 The proof of Lemma 5 is a bit involved, so we will do it step by step.

3



The errorless case Suppose that we had a perfect oracle A that computed r 7→ 〈x, r〉 with
probability 1. Then, we could recover the first bit of x by outputting A(r) ⊕ A(r ⊕ e1) for
some r (where e1 is the vector with all zeroes except at the first location).

Note that

A(r)⊕A(r ⊕ e1) = 〈x, r〉 ⊕ 〈x, r ⊕ e1〉 =∑
xiri +

∑
xi(ri ⊕ e1i ) =

∑
xiri +

∑
xiri +

∑
xie

1
i = x1

The small error case Suppose that the oracle A was correct with probability 0.9 over the choice
of r. Then because for a random r, r ⊕ e1 is uniformly distributed, we can use the union
bound to show that the probability we get an incorrect answer when asking A(r) and A(r⊕1)
is at most 0.2. (Note that these questions are dependent but the union bound still works in
this case.)

Therefore, if we choose a random r, then with probability at least 0.8, A(r)⊕A(r ⊕ e1) will
give us the first bit of x, and we can amplify this probability to 1/(10n) by making 10 log n
repetitions and taking the majority vote. In this way, we can recover all of the bits of x with
high probability.

This will work as long as A is correct with probability more than 3
4 , but when A is correct

with probability, say, 0.7, this analysis doesn’t help us at all. The union bound will only say
that we get the right value with probability at least 0.4 - worse than random guessing!

The full case The full case is when the oracle A is only guaranteed to be correct with probability
1/2 + ε.

Proof of Lemma 5.

Review: the low error case Recall that we said that if Prr[A(r) = 〈x, r〉] ≥ 0.9, then we can
recover the ith bit of x by choosing r1, . . . , rK at random (K ≥ 1000 log n will do) and taking
the majority of A(r1)⊕A(r1 ⊕ ei), . . . , A(rK)⊕A(rK ⊕ ei).
The analysis of this uses the following facts:

1. If r is chosen uniformly at random then r ⊕ ei is also uniformly distributed.

2. Therefore, Pr[A(r) 6= 〈x, r〉] ≤ 0.1 and Pr[A(r ⊕ ei) 6= 〈x, r ⊕ ei〉] ≤ 0.1, implying by
the union bound that Pr[A(r) = 〈x, r〉 AND A(r ⊕ ei) = 〈x, r ⊕ ei〉] ≥ 0.8. Thus, with
probability at least 0.8, A(r)⊕A(r ⊕ ei) = xi.

3. Using the Chernoff bound, if we repeat this forK independently chosen random r1, . . . , rK

then the probability that the majority of the values A(rj)⊕A(rj ⊕ ei) will be different
from xi is at most 2−K/1000.

The reason is that the Chernoff bound guarantees that if X1, . . . , XK are independent
random 0/1 variables with Pr[Xj ] = p, then

Pr
[
|
∑
j

Xj − pK| > εpK] ≤ 2−ε
2pK/5

Letting Xj be the random variable that is equal to 1 if both A(rj) and A(rj ⊕ ei) are
correct we get the result.

4



4. This means that if we choose K > 104 log n, then the probability we get the correct
value for the ith bit is at least 1 − 1

10n . Using the union bound, this means that with
probability at least 0.9 we get the correct value for all of the bits.

Extending the analysis to the higher error case Suppose now that A(r) is only correct with
probability 1/2 + ε. In this case we can no longer argue that with probability better than
1/2, both A(r) and A(r ⊕ ei) are correct. However, note the following (seemingly useless)
observation:

If someone gave us the values of z1 = 〈x, r1〉, . . . , zK = 〈x, rK〉 for K = 100
εn log n randomly

chosen strings r1, . . . , rK then we could run the algorithm above to deduce all the bits of x.
The reason is that since Pr[A(r⊕ ei) = 〈x, r⊕ ei〉] ≥ 1/2 + ε, the Chernoff bound implies that
the ith bit of z is equal to the majority of zj ⊕A(rj ⊕ ei) with probability at least 1− 1

10n .

Using pairwise independence Another observation is that we could still run the same algorithm
if someone gave us the values of z1 = 〈x, r1〉, . . . , zK = 〈x, rK〉 for K = 10n

ε2
strings that are

chosen from a pairwise independent distribution.

By pairwise independent we mean that each rj is has the uniform distribution and for every
i 6= j, the random variables ri and rj are independent, but it’s not necessarily the case that
for a triple i, j`, the random variables ri, rj , r` are independent.

The reason we can still carry through the analysis is that if we define Xj to be the random
variable that is 1 if A(rj ⊕ e1) is correct and 0 otherwise, then we know that E[Xj ] ≥ 1

2 + ε,
and that the variables X1, . . . , XK are pairwise independent, and hence V ar(X1+. . .+XK) =
V ar(X1) + . . .+ V ar(XK) ≤ K. (Note that E[X1 + . . .+Xk] =

∑K
j=1 E[Xj ] ≥ (1/2 + ε)K.)

It follows that by the Chebychev Inequality

Pr
[
majority value incorrect

]
≤ Pr

∣∣∣∑
j

Xj − E[
∑
j

Xj ]
∣∣∣ ≥ εK = ε

√
K
√
K

 ≤ ε

K

Meaning that for K > 10n
ε2

, this probability is less than 1
10n .

Getting these values How do we get these magical values z1, . . . , zK? One way is to just guess
them but this will be successful with probability 2−K which is far too small.

The crucial observation is the following lemma:

Lemma 6. Let K = 2k − 1 and identify every number j between 1 and K with a non-empty
subset Sj of [k]. Consider the following distribution r1, . . . , rK over {0, 1}n: first s1, . . . , sk

are chosen independently at random in {0, 1}n, then we define rj =
∑

i∈Sj
si (where the sum

is done componentwise modulo 2).

Then r1, . . . , rK are pairwise independent.

Once we have Lemma 6 we’re done. The reason is that we can choose k = log(10n
ε2

)+1 strings
s1, . . . , sk at random and guess values y1, . . . , yk, hoping that yi = 〈x, si〉. We will be correct

with probability 2−k = ε2

20n . Now, identifying the numbers between 1 and K = 10n
ε2

with the
non-empty subsets of [k], define for every j ∈ [K],

rj =
∑
i∈Sj

si

5



then we can set 〈x, rj〉 =
∑

i∈Sj
〈x, si〉 and hence we have a collection of K pairwise indepen-

dent strings r1, . . . , rK for which we know the values 〈x, rj〉 for every j!

Proof of Lemma 6 We need to show that for every i 6= j and strings z, w ∈ {0, 1}n, Pr[ri =
z AND rj = w] = 2−2n.

In other words, we need to show that for every distinct pair of non-empty sets U, V

Pr[
∑
u∈U

su = z AND
∑
v∈V

sv = w] = 2−2n

We’ll demonstrate this for the pair U = 1, 2, 3 and V = 1, 2. That is, we need to show that
if we pick s1, s2, s3 independently at random, then the probability that the following pair of
equations are satisfied is exactly 2−2n.

s1 + s2 + s3 = z

s1 + s2 = w

(If you know some linear algebra you can see this is the case because the two equations are
linearly independent.)

Fix any choice for s1. We will prove that there is a unique pair s2, s3 that satisfy

s2 + s3 = z − s1
s2 = w − s1

but this is immediate from the equations.

Conclusion As a conclusion we get that the function x, r 7→ f(x)‖r‖〈x, r〉 is a pseudorandom
generator.

Hard-core bits We can abstract the essence of the Goldreich-Levin theorem as follows: define a
hard-core bit for a one-way function or permutation g : {0, 1}∗ → {0, 1}∗ to be a function
h : {0, 1}∗ → {0, 1} such that for every poly-time A and poly-bounded ε,

Pr
x←R{0,1}n

[A(g(x)) = h(x)] ≤ 1
2 + ε(n)

The Goldreich-Levin Theorem says that if there exists a one-way permutation f , then there
exists a different one-way permutation g (namely, g(x, r) = f(x)‖r) that has a hardcore bit
h (namely, h(x, r) = 〈x, r〉). Thus it is often known as the theorem that every one-way
permutation has a hardcore bit.

Commitment Schemes One use that we may like for a digital envelope is the ability to commit
in advance to some value. For example, suppose I bet you a million dollar that I can predict
the winner of American Idol. Now I don’t want to tell you my prediction since you’d have
considerable financial incentive to try to effect the competition’s outcome. On the hand,
you’d probably want me to commit in advance to my prediction (i.e., you won’t be too happy
with a protocol where after the results are known I’d tell you whether or not this was the
winner I predicted.)

In the physical world, we might try to solve this problem by me writing the prediction in
an envelope and putting the envelope in a safe (ideally, guarded by both of us). The digital
analog for that is a commitment.

6



Definition 7 (Commitment schemes). A commitment scheme Com is an unkeyed function
that takes two inputs: a plaintext x ∈ {0, 1}` and randomness r (chosen in {0, 1}n). The
idea is that to commit to the winner I let x be my prediction (e.g. x =‘Siobhan’), choose
r ←R {0, 1}n and publish y = Com(x, r). Later to prove I predicted x, I will publish x and r.

A commitment scheme should satisfy the following two properties:

Hiding / Secrecy / Indistinguishability For every x, x′ ∈ {0, 1}`, Com(x, Un) is compu-
tationally indistinguishable from Com(x′, Un). (Note this is the same as the indistin-
guishability property for encryption scheme, and implies that given y = Com(x, Un) an
adversary can’t learn any new information about x.)

Binding For every y there exists at most a single x such that y = Com(x, r) for some
r ∈ {0, 1}n. (This implies that it is not possible to come up with two different pairs x, r
and x′, r′ with x 6= x′ that yield y.)

Why not encryption? You might be wondering why do we need to use a new primitive:
why don’t I simply encrypt the plaintext and give you the encryption. The problem with this
approach is that an encryption does not necessarily bind me to a single value. As an example,
consider the one-time-pad encryption: I can give you a random string y. Then, if the winner
is Fantasia I will give you x =‘Fantasia’, k = x ⊕ y and claim that initially I encrypted x
with the key k to get y. If the winner is Eva I will give you x′ =‘Eva’, k′ = x′⊕ y and claim
I initially encrypted x′ with the key k′ to get y. You have no way to dispute this claim.

Another application. Another, perhaps more plausible application for commitment schemes
is to arrange close bids. Suppose I am a government agency that wants to award a contract
to the lowest bidder. One way to arrange this is to have all bidders send their bids to the
agency, but then perhaps an unscrupulous worker can leak the bid of one company to a
different company. Instead, all bidders can send a commitment to their bid to the agency,
and only after all bids have been received will they send the randomness needed to open the
commitment.

We will see more applications for commitment schemes later in the course.

Constructing commitments The first observation is that to construct a commitment to strings
of length `, it is enough to construct a commitment to single bits. The reason is if I have a
single-bit commitment then to commit to a string x = x1 · · ·x` I will simply commit to each
bit separately (using of course independent randomness for each bit). The security of this
scheme is left as an exercise.

Let f : {0, 1}n → {0, 1}n be a one-way permutation and h : {0, 1}n → {0, 1} be a hard-core bit
for f(·). To commit to a bit b, I will choose r ←R {0, 1}n, and let Com(b, r) = f(r), h(r)⊕ b.

Theorem 8. The function Com(b, r) = f(r), h(r)⊕ b is a secure commitment scheme.

Proof. (The following proof is a bit sketchy, and it’s a good exercise for you to fill in the
details.)

Binding Given y = y′, c there is a single r such that y′ = f(r). Thus, this r determines
completely whether y is a commitment to 0 (in which case c = h(r)) or a commitment
to 1 (in which case c = h(r)).

7



Hiding We need to prove that f(r), h(r)⊕0 is indistinguishable from f(r), h(r)⊕1. However,
f(r), h(r) is indistinguishable from Un+1 and Un+1 with the last bit flipped is the same
distribution as Un+1.

Coin tossing over the phone

8


