
COS 433 — Cryptography — Homework 7.

Boaz Barak

Total of 140 points. Due March 31, 2010.

For this exercise, let us say that {fe} is collection of trapdoor permutations if for every e ∈
{0, 1}n, fe is a permutation of {0, 1}n, there is a polynomial-time algorithm G that on input 1n

outputs a pair (e, d) such that the maps (x, e) 7→ fe(x) and (y, d) 7→ f−1e (y) can be computed in
polynomial time, and for every polynomial-time A there is a negligible function ε such that

Pr
(e,d)←RG(1n)
x←R{0,1}n

[
A(1n, e, f(x)) = x

]
< ε(n)

(This is a slight strengthening of the definition of trapdoor functions we saw in class and is in the
Boneh-Shoup book, made mostly for simplicity.)

Exercise 1 (30 points). Consider the following public key encryption scheme based on any family
of trapdoor permutations {fe}.

Key generation Choose (e, d)←R Gen(1n) where Gen is the generator for the trapdoor permuta-
tion family {fe}.

Encryption To encrypt a bit b ←R {0, 1} using the key e: choose x ←R {0, 1}n, choose r ←R

{0, 1}n, and output fe(x), r, 〈x, r〉 ⊕ b.

Decryption To decrypt the message (y, r, c) using d: compute x = f−1e (y) and output 〈x, r〉 ⊕ c.

Prove that if {fe} is a trapdoor permutation collection, the above scheme is a CPA secure
public key encryption scheme, where the definition of CPA secure public key encryption scheme is
the same as the definition of CPA-security for private key schemes, except that the adversary gets
the public key e.

Exercise 2 (20 points). 1. We say that a number y ∈ Z∗n is a Quadratic Residue (QR) if y = x2

for some x ∈ Z∗n. (We refer to x as a sqrt of y.) Prove that the set of QRs is a subgroup of
Z∗n.

2. Let p > 1 be a prime number. It can be shown that Z∗p is a cyclic group, that is there exists a

generator g ∈ Z∗p such that Z∗p = {g1, . . . , g(p− 1)}. For y ∈ Z∗p we let logg(y) to denote the
smallest non-negative integer i for which gi = y. For example logg(1) = 0 and logg(g) = 1.
(Note that 0 ≥ logg(y) ≥ p − 1.) Show that y is a QR in Z∗p if and only logg(y) is an even
number.

Exercise 3 (20 points). We can define chosen ciphertext security for public key encryption schemes
in the same way that we defined them for private key encryption schemes: the adversary gets access
to a decryption box before the challenge and after receiving the challenge ciphertext y∗ is allowed

1

to query the box on every string y except for y∗. The only difference is that the adversary gets
initially the encryption key as another input. As usual we say the scheme is secure against Chosen
Ciphertext Attack (CCA secure for short) if no poly-time adversary can win with 1/2 + ε(n)
probability where ε is poly-bounded.

1. Show that every public key encryption that is built from a trapdoor permutation family as
in Exercise 1 (when we encrypt an n bit message by encrypting each bit individually) is not
CCA secure. See footnote for hint1

2. Show that the specific encryption scheme based on Rabin’s trapdoor permutation family has
an even more devastating attack: show that given access to a decryption box for this scheme
a polynomial-time adversary can recover the private key with high probability using only a
constant number of queries.

Exercise 4 (20 points). In this question we complete and formalize the proof of the Chinese
Reminder Theorem.

1. Let G1, G2 be abelian groups where +i is the group operation of Gi. We define the direct
product G

def
= G1 × G2, which consists of all pairs (a1, a2) where ai ∈ Gi. We can view G

in a natural way as an abelian group if we define the group operation +G component-wise:
(a1, a2)+G (b1, b2) = (a1+1 b1, a2+k b2). Prove that G is indeed an abelian group with respect
to +G.

2. A group homomorphism is a function f from an abelian group G to an abelian group H that
preserves the group operation; i.e., f(a) +H f(b) = f(a +G b) for all a, b ∈ G. Let n = p · q
where gcd(p, q) = 1. Let f be a mapping from Zn to Zp × Zq such that f(x) = (x mod p, x
mod q). Show that f is a group homomorphism.

3. Show that f(x) ∈ Z∗p × Z∗q if and only if x ∈ Z∗n.

4. By the previous question, f can be viewed as a mapping from Z∗n to Z∗p × Z∗q . Show that in
this case f is also a group homomorphism.

5. Give a polynomial-time algorithm to invert f (assuming that p, q are known). That is, give
a poly(log(p) + log(q))-time algorithm that on input p, q and (x′, x′′) ∈ Zp × Zq outputs
x ∈ {1..pq} such that x′ = x (mod p) and x′′ = x (mod q). See footnote for hint.2

6. Prove that |Z∗n| = (p−1) · (q−1), and conclude that f is an isomorphism from Z∗n to Z∗p ×Z∗q
as well as from Zn to Zp × Zq.

Exercise 5 (20 points). Suppose that the RSA Assumption fails “somewhat” on a particular
composite number N and e with gcd(e, ϕ(N)) = 1, in the sense that there is a T -time algorithm A
such that

Pr
y←RZ∗N

[A(y) = x s.t. xe = y (mod N)] > 0.01

Show that there is a 100(logN)100 · T -time algorithm B that breaks the RSA Assumption
completely for N, e in the sense that

Pr
y←RZ∗N

[A(y) = x s.t. xe = y (mod N)] > 0.99

1Hint: Show that every encryption scheme that works in a bit-by-bit fashion is not CCA secure.
2Hint: Use the gcd algorithm to find integers α, β such that αp + βq = 1. Use this to invert f on the inputs (1, 0) and (0, 1) and proceed

using linearity.

2

See footnote for hint3

Exercise 6 (20 bonus points + 10 extra bonus points). Prove that the following algorithm outputs
a random number R in {1..N} together with R’s factorization:

1. Generate a random decreasing sequence N ≥ S1 ≥ · · · ≥ S` = 1, by choosing S1 at random
in {1..N}, S2 at random in {1..S1} and so on until reaching 1.

2. Let (P1, . . . , P`′) denote the Si’s in this sequence that are prime, and let R = P1 · · ·P`′ . If
R ≤ N then with probability R/N output R together with its factorization (P1, . . . , P`′).

3. If we did not output a number in Step 2, go back to Step 1.

You need to prove that (a) conditioned on outputting a number R, R will be distributed
uniformly in {1..N} and (b) that the algorithm runs in time poly(logN). Both follow by showing
that for every R ∈ {1..N}, the probability that R is output in one iteration of the algorithm in
Step 2 is (1/N)

∏
P≤N (1 − 1/P) (note that this product is over all P ≤ N , and not just P that

divides N). You can use the fact that
∏

P≤N (1− 1/P) ≥ Ω(1/ logN) (or for 10 extra points prove

it by using the method from the lecture notes to bound
∑

P≤N logP). See footnote for hint4

The algorithm of this exercise is due to Adam Kalai, although please do not look at his paper
until after you have completed the exercise on your own.

BTW a clarification - there is really no difference between bonus points and “plain” points.
I designate some questions as bonus when they are harder or a bit tangential to the course. I
also always make sure that you can earn 100 points for the home work without doing the bonus
questions. Thus I suggest that you work on the other questions first, and tackle the bonus questions
later.

3Hint: Use the fact that y1/er = (yr)1/e (mod N) for every r ∈ Z∗
N .

4Hint: Think of the random number S1 as chosen as follows: we output N with probability 1/N , otherwise we output N−1 with probability
1/(N − 1), otherwise we output N − 2 with probability 1/(N − 2), etc..

3

