
Near-optimal fully-dynamic graph connectivity

Mikkel Thorup
AT&T Labs--Research, Shannon Laboratory
180 Park Avenue, Florham Park, NJ 07932

mthorup @ research.att.edu

ABSTRACT
In this paper we present near-optimal bounds for fully-
dynamic graph connectivity which is the most basic non-
trivial fully-dynamic graph problem. Connectivity queries
are supported in O(log n/log log log n) time while the up-
dates are supported in O(log n(log log n) 3) expected amor-
tized time. The previous best update time was O((log n)2).
Our new bound is only doubly-logarithmic factors from a
general cell probe lower bound of f2(log n~ log log n). Our
algorithm runs on a pointer machine, and uses only stan-
dard AC ° instructions.
In our developments we make some comparatively trivial ob-
servations improving some deterministic bounds. The space
bound of the previous O((log n) ~) connectivity algorithm is
improved from O(m + n log n) to O(m). The previous time
complexity of fully-dynamic 2-edge and biconnectivity is im-
proved from O((log n) 4) to O((log n) 3 log log n).

1. INTRODUCTION
In a fully-dynamic graph problem, we are considering a
graph G over a fixed vertex set V, IVI = n. The graph G
may be updated by insertions and deletions of edges. Unless
otherwise stated, we assume that we start with an empty
edge set. Further, the updates may be interspersed with
queries concerning properties of G. By an operation we
mean an update or a query. All operations are presented on-
line, meaning that we have to respond without any knowl-
edge of future operations.
In this paper, we study the most basic non-trivial fnlly-
dynamic graph problem; namely that of fully-dynamic graph
connectivity where the query Connected(v, w) should tell
if the vertices v and w are connected. We present a
near-optimal randomized and amortized algorithm for fully-
dynamic graph connectivity, showing that the operation
complexity of this problem is O(logn) where O(f(n)) =
f (n) (log f (n)) +e(1) .
The connectivity problem reduces to the problem of main-
raining a spanning forest (a spanning tree for each c o m -

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and tile full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

ponent) in that if we maintain any spanning forest F
for G at cost O(t(n)logn) per update, then, using dy-
namic trees [8], we can answer connectivity queries in time
O(logn/log t(n)). In this paper, we show how to main-
tain a spanning forest in O(log n(loglog n) 3) time per up-
date. Connectivity queries are then answered in time
O(log n~ log log log n).

Our upper bounds are only doubly-logarithmic factors from
a general cell probe lower bound of f2(log n/log log n) [3; 7].
This lower bound holds both for amortization and random-
ization, and it holds even if the graph is restr icted to be a
forest.

Previous work. In 1985 [2], Fredrickson introduced a da ta
structure known as topology trees for the fully-dynamic min-
imum spanning tree problem with a worst case cost of
O(v/'m) per update, permit t ing connectivity queries in time
O(log n~ log(v/-~/ log n)) = O(1). In 1992, Epstein et. al. [1]
improved the update time to O(x/-ff) using the sparsification
technique.
In 1995 [4], Henzinger and King used randomization to
maintain some spanning forest in O(log 3 n) expected amor-
tized time per update. Then cormectivity queries are sup-
ported in O(log n/loglogn) time. The update bound was
further improved to O(log 2 n) in 1996 [5] by Henzinger and
Thorup.
In 1998 Holm et al. [6] got rid of the randomization, pro-
viding a simple deterministic algorithm maintaining some
spanning forest in O(log 2 n) amortized time per update and
answering connectivity queries in O(log n~ log log n) time.
For the incremental (no deletions) and decremental (no in-
sertions) problems, the bounds are as follows. Incremental
connectivity is the union-find problem, for which Tarjan has
provided an O (a (m , n)) bound amortized over m updates
[9]. For decremental connectivity, Thorup has provided an
O(log n) bound if we s tar t with f~(n log 6 n) edges, and an
O(1) bound if we s tar t with f~(n 2) edges [10].
In this paper, we improve the amortized randomized update
time for maintaining some spanning forest from O((log n) 2)
to O(logn(loglogn) ~) time. Connectivity queries are then
answered in O(log n/log log log n) time. Our upper bounds
are only doubly-logarithmic factors logarithmic factors from
an f~(log n~ log log n) lower bound on fully-dynamic connec-
tivity [3; 7].

Techniques. All the previous poly-logarithmic algorithms
for fully-dynamic connectivity translate each update into
O(log n) s tandard operations on trees [4; 5; 6]. Each tree op-

343

eration is supported in O(log n), and hence these approaches
have converged towards an ®((log n) 2) bound.
The tree operations involve connectivity queries, for which
we have an 12(log n~ log log n) lower bound in the cell probe
model [3; 7]. Nevertheless, we will support almost all the
tree operations in O((log log n) 3) time!
We will take star t ing point in the colmectivity algorithm
of Holm et al. [6] and show how many tree operations can
be organized and batched using a sampling lemma from [5].
This circumvents the f~(log n / l o g log n) lower bound that
only holds for single on-line queries. We then make a careful
analysis of the the dynamics of the abstract algorithm from
[6], and construct some novel tailor made da ta structures to
provide exponentially faster support for the tree operations.
Some of our initial developments improve the space per-
formance of the connectivity algorithm from [6] from
O(m + n log n) to linear, yet preserving the deterministic
O((log n) ~) amortized time bound. Also, we get some simple
improvements of the deterministic t ime bounds for 2-edge
and biconnectivity from O((log n) 4) to O((log n) ~ log log n).
In our implementation we make the s tandard assumption
that each word of the computer contains at least log n bits.
Our implementation will be done on a pointer machine,
meaning that we will not do any address arithmetic.

2. CONNECTIVITY A LA HOLM ET AL.
In this preliminary section, we present our start ing point;
namely a slightly modified version of the fully-dynamic con-
nectivity algorithm from [6] for maintaining a spanning for-
est F of a graph G. The edges in F will he referred to as tree
edges. Internally, the algorithm associates with each edge e
a level e(e) _< e~,ax = Llog~ nJ. For each i, a i denotes the
subgraph of G induced b y edges of level at least i, and Fi
denotes F Cl Gi. The following invariants are maintained.

(i) F is a maximum (w.r.t. g) spanning forest of G, that
is, for each i, Fi is a spanning forest of Gi.

(ii) The maximal number of vertices in component of Gi,
or Fi, is [n/2i]. Thus, the maximal relevant level is
~m&x •

Initially, all edges have level 0, and hence both invariants
are satisfied. We are going to present an amortization ar-
gument based on increasing the levels of edges. The level
of an edge is only going to be decreased when it is being
deleted, so until then, we can have at most gm~x increases
per edge. Intuitively speaking, when the level of a non-tree
edge is increased, it is because we have discovered that its
end points are close enough in F to fit in a smaller tree on
a higher level. Concerning tree edges, note that increasing
their level cannot violate (i), but it may violate (ii).
We are now ready for a high-level description of insert and
delete.

I n s e r t (e) The new edge is given level 0. If the end-points
were not connected in F = F0, e is added to F0.
Clearly, neither (i) nor (ii) is violated.

De l e t e (e) If e is not a tree edge, it is simply deleted. If e
is a tree edge, we call Replace(e) below.

R e p l a c e ((v , w)) Set i = ~(v, w). By (i) a replacement edge,
reconnecting F has to be on level at most i, and fur-
ther, to preserve (i), we should seek a replacement edge
on the hightest possible level.

Let Tv and T~ be the trees in Fi \ {(v, w)} containing
v and w, respectively. We are looking for a level i
non-tree edge f incident to both Tv and T~.

Assume, without loss of generality, that Irvl _< ITwl.
By (i!), the tree in Fi containing (v, w) has at at most
In /2 '] vertices, so T~ has at most In /2 i+1] vertices.
Hence, preserving our invariants, we can take all level
i tree edges in T~ and increase their level to i + 1, so
as to make To a tree in Fi+t .

Now level i non-tree edges incident to Tv are visited
one by one until either a replacement edge is found,
or all edges have been considered. Let f be an edge
visited during the search.

If f has both end-points in T., we may increase its
level to i + 1 without violating (i). This increase pays
for considering f .

Otherwise f is the desired replacement edge connect-
ing Tv and T~. Since e and f are on .the same level,
we can replace e by f in F without violating (i) or (ii).
Afterwards, e is non-tree edge tha t is removed.

Suppose we do not find a level i replacement edge.
If i = 0, we conclude there is no replacement edge,
so we finish by removing e. If i > 0, we decrease
the level of (v, w) without violating (i), and then call
Replace((v, w)) recursively.

Efficient implementations of the above high-level algorithm
hangs on amortizing costs over edge level changes, of which
we have at most 2gmax = O(log n) per edge inserted.

2.1 Implementation
In [6], for each level i, Holm et aJ. maintained the forest Fi
together with all level /-tree non-tree edges incident to it,
as well as the sizes of each tree in Fi. Using the ET-da ta
structure from [4], the following operations were supported
in O(log n) time: checking if the vertices v and w are con-
nected in Fi, inserting or deleting a tree edge from Fi, adding
or removing a level i non-tree edge at each of its end points
in Fi, finding the size of the tree in Fi containing a vertex v,
and, finally, checking if there is a level i t ree/non-t ree edge
connected to a given node in Fi, and returning one such edge
if any.
Wi th the above representation, it is straightforward to im-
plement the high-level algorithm in O(log n) t ime per edge
level change plus O((log n) 2) t ime per edge insertion or dele-
tion, hence in O((log n) 2) amortized time per update. This
implementation uses O(m) space for the non-tree edges and
O(n) space for each forest Fi, hence in O(m + nlog n) total
space.
As a side-effect of our developments, we are actually going
to make the space bound linear. To see that this is non-
trivial with the above approach, note that when an edge
(v, w) to be deleted, for each Fi we need to know the sizes
of the two subtrees T~ and Tw resulting from the deletion.
It is the maintainance of these sizes that is the bottle-neck.
If we ignore the sizes, it is trivial to collapse all the Fi in a
single dynamic tree [8].

3. TOWARDS NEAR-OPTIMAL BOUNDS
In this paper, we are going to make a near-opt imal imple-
mentat ion of the high-level algorithm from the previous sec-
tion, spending O(log n(log log n) 3) expected amort ized time

344

per edge insertion or deletion. First we consider the costs
associated with testing if level i non-tree edges incident to
T. reconnects to To. During a deletion, we are looking for
at most one reconnecting replacement edge, and this edge
we are happy to pay O(logn(loglogn) a) for. In general,
however, each non-tree edge may be tested and found not to
reconnect log 2 n times, once for each level, so we can only af-
ford to spend O((log log n) 3) per failed test. This seemingly
contradicts the cell probe lower bound of ~2(log n~ log log n)
for maintaining connectivity in a dynamic forest [3; 7]. The
lower bound, is, however, for arbitrary vertex pairs, and
what we will do is to show

Tes t -a l l We can find all level i non-tree edges incident to
T~ in O((loglogn) 3) time per edge. The edges are
found via their end-points in Tv, which we mark. Then
we can test if (x, y) is a replacement edge simply by
checking that it has only one marked end-point.

The most immediate problem now is that we want to amor-
tize over level increases, and we can only move non-tree
edges up that do not reconnect to T~. Thus, we are fine if,
say, 1/2 of the tested edges do not reconnect, but if most
edges reconnect, we are doing a lot of testing that is not
paid for. To check if there are too many' replacement edges,
we will support sampling:

S a m p l e - a n d - t e s t In O(log n(loglog n) 3) time, we can al-
most uniformly sample a level i non-tree edge incident
to T. and check if it reconnects to T~.

We are now ready to describe the new testing procedure:

• If T. has O(log n) incident level i non-tree edges, we
use test-all. If a replacement edge is found, it pays
the cost of O(log n(log log n)3); otherwise no edges re-
connect, and they all get their levels increased, at a
testing cost of O((log log n) 3) per edge.

• If T. has f/(log n) incident level i non-tree edges, we
use Sample-and-test an expected constant number of
times, either finding a replacement edge paying for the
samples, or concluding with probability O(1/n) that
at least half the edges do not reconnect. In the lat-
ter case, we can apply Test-all at an expected cost of
O((loglog n) 3) per non-connecting edge.

The above type of sampling procedure may look impossi-
ble, but as shown in [5, Sampling Lemma] it is possible.
The subtle point is that we are making an expected constant
number of samples. Often we will make a large number of
samples but then, with correspondingly high probability, we
will end up claiming correctly that at least haft the edges
are non-connecting.
Before showing how to make the level i non-tree edges inci-
dent to T. readily available, we need to go through several
developments.

4. A NEW STRUCTURAL VIEW
For our implementations, we need a different view of the
Holm et al.'s algorithm from §2. As a side-effect we will get a
quite different implementation using only linear space. The
algorithm will still he deterministic and achieve the same
time bounds. A main point in our implementation is an ob-
servation that we do not need to support general deletions

(a)

(b) i-I .
i

i + t v ~

(c)

i - I .

i

Figure 1: The effect on the structural forest of a replace on
level i: Starting from Figure (a), two level i + 1 components
are to be merged into the new level i + 1 component T,
containing v. If we find a replacement edge, we go to (b);
otherwise we go to (c) and recurse on level i - 1.

of tree edges from the Fi. Rather than using general data
structures, we will develop simpler tailor made data struc-
tures for implementing the connectivity algorithm. In this
section, we will not yet worry about randomized sampfing.

4.1 The structural forest
We are going to maintain a rooted forest C, called the struc-
tural forest, over the nodes of G. The leaves of C are the
vertices G. All leaves have depth g The level of a node is
its depth, and the nodes at level i represent the components
in Gi. The level i ancestor of the vertex v is denoted v i. For
a linear space implementation, nodes of C with only one
child should be suppressed. For each node a E C, we main-
tain the size n(a) which is the number of leaves descending
from a. These leaves are the vertices in the component rep-
resented by a.
In the following, for clarity, vertices and edges always belong
to G while nodes and arcs always belong to C (or C L defined
in the next subsection).
Note that C is independent of the choice of our g-maximal
spanning forest F. Since Fi is not represented, this seem-
ingly gives the problem that we cannot delete an arbitrary
edge (v, w) from Fi and isolate T~ and T~ as in the connec-
tivity algorithm of Holm et al. However, this turns out not
to be a problem if we do things in a different order.
We will now discuss how the structural forest changes as
edges are inserted in and deleted from G. While physically
changing C, v i always denotes the ancestor of v which is
£~o.x -- i steps up from v.
We need to define merging of nodes in C. Two nodes a and
b can be merged if either a and b are siblings, or a and b are
both roots. By merging a and b in a, we mean that we move
all the children of b to a and delete the node b.
Inserting and deleting non-tree edge does not affect C. In-
serting a tree edge (v, w) amounts to merging v ° and w ° in
v °, setting n(v °) := n(v °) + n(w°).
When deleting a tree edge (v, w) on level i, we search a
replacement edge on level i. The effect on C is illustrated in
Figure 1. The first thing that happens is that we increase the
levels of the level i tree edges in T~ from i to i + l . Let (x, y)
be such a tree edge. In C this corresponds to merging x i+1

345

and yi+i, set t ing n(x i+i) := n(x i+i) + n(y i+i). When done,
T. is represented by v i+l . Afterwards, We may increase the
levels of some non- t ree edges, bu t this does not affect C.
Now, if a replacement edge f is found on level i, then re-
placing e by f in F , does not affect C, and af terwards we
can jus t delete e as a non- t ree edge. Otherwise, if i < 0, we
logically increase the level of (v ,w) to i + 1 by removing v i+i
from the children list of v i = w' , create a new node v * with
v i+i as single child, and make v ~ a new child of w i - i . T h e n
we set n(v ') := n(v i+l) and n(w i) := n(w i) - n(vi). Note
tha t n(w ' - l) is not affected. If i = 0, we do the same except
tha t we do not make v ° a child of a non-exist ing w - i .
In our la ter implementa t ions it is convenient if no child can
change its size, so when we want to change the size of a
child, first we remove it f rom its parent , then we change the
size, and af terwards we reinsert it wi th its new size. Clearly
the number of s t ruc tura l changes remain bounded in the
number of edge level changes. Summing up,

LEMMA 1. Each edge level change gives rise to O(1)
changes in C where each change is a creation of a new node,
adding or removing a child from a node, or merging two
nodes. While the size of a node changes, it is not a child of
any node.

4.2 Local search trees
In order to guide searches for level i t ree and non- t ree edges
we will expand C to a binary tree C L of height O(log n).
For each node a in C, we main ta in a binary tree L(a) over
the children of a in C. We will refer to L(a) as local tree
at a. The t ree L(a) will be weight balanced in the sense
tha t for each child b of a, the dep th in L(a) of b is O(1 +
log(n(a)/n(b))) . By e L we refer to the binary tree result ing
from C when for each a, we put L(a) between a and its
children in C. T h e weight balancing implies tha t the dep th
of any leaf in C n is O(!og n). As an immedia te result, we
can get from v to any v ' in O(log n) time.
We can now in O(log n) t ime test if an inserted edge (v, w)
should be a t ree edge by tes t ing if v ° ¢ w °. Similarly, when
recovering on level i af ter having collected T~ under v i+l ,
we can test if a non- t ree edge (x, y) is a replacement edge
by test ing if x ~+~ ¢ y~+l.
For each node a in C L, we will main ta in two b i tmaps t ree(a)
and non- t ree(a) t ha t for each i tell whether there is a de-
scending leaf wi th an incident tree or non- t ree edge.
Finally, for each ver tex v of G, we have the incident edges
grouped depending on their level and on whether they are
tree or non- t ree edges. Since there are at most 21ogn
groups, a s t andard search t ree brings us down to a par t icular
group in O(log log n) t ime.
Now, from any node a in C, we can find a level i t r ee /non-
tree edge incident to a leaf descending f rom a, if any, in
t ime O(log n). Also, we can change the level or t r ee /non-
tree s ta tus of any edge in t ime O(log n).

4.3 Identifying the smaller tree
When looking for a rep lacement of (v, w) we need to find
the smaller of the two level i trees result ing from cut t ing
(v, w). We show how to find the size of T, in t ime O(log n)
t imes the number of level i t ree edges in T. . Applying this
procedure in parallel to T~, s topping as soon as we have
found one of the sizes, we spend t ime O(log n) t imes the
number of level i t ree edges in the smaller tree, and hence
O(log n) t ime per level increase. The o ther size is found in

constant t ime by subt rac t ing the size found from n(wi) . The
following procedure is used:

S i ze ((x , y), i) where (x, y) is a level i edge, finds the number
of nodes connected to y in Fi \ (x, y).

First we move up to yi+l in C L in O(log n) t ime, and
set s := n(y i+1). T h e n we search down from yi+i using
the b i tmaps to find all level i t ree edges incident to a
descendant x ~ of y,+l in O(log n) t ime per edge. For
each such edge (x ' , y ') # (x, y), we add Size((x ' , y ') , C)
to s. Finally, we re tu rn s.

A call Size((w, v), i) finds the size of Tv in O(log n) per level
/ - tree edge in Tv, as desired. It t raverses all l e v e l / - t r e e edges
in Tv. By recording them, we are ready to increase their level
if Tv turns out to be smaller than T~. Increasing the level
of such an edge (x, y) is trivially done in O(log n) t ime, and
thereby we also identify x i+l and y~+l to be merged. Hence,
all tha t remains is to implement the s t ruc tura l changes.

4.4 Tailor made weight balanced structure
We are now going to tell how we main ta in the local trees
as we remove and insert children and merge nodes. Each
child b of a node a is given a rank rank(b) = log(n(b)). A
local tree B(a) is buil t b o t t o m - u p in the following greedy
fashion. We s tar t wi th each child of a being its own local
root. Then, while there are two local roots wi th the same
rank r, we pair them, creat ing a new new root above them
with rank r + l . At the end, we have at most l o g n local
roots over what we call local rank trees. Final ly we make
a pa th P down from a where the local rank roots branch
off in order of decreasing ranks. Here by branching off we
mean tha t each node x E P, but the last, has two children;
namely its successor in P and a rank root . T h e last node
in P has two rank roots as children. This completes the
description of the syntax of a local tree. A s t ra ight forward
analysis shows tha t the dep th in L(a) of a s t ruc tura l child b
of a is at most log(n(a) /n(b))+ 1. Recal l f rom L e m m a 1 tha t
a s t ruc tura l child never changes size, so it is only s t ruc tura l
changes tha t can violate the organiza t ion of the rank trees.
Merging of a and b is done as follows. Fi rs t we strip off
the connect ing paths, leaving us wi th the at most 21ogn
rank roots in two sor ted lists. These two lists are merged
in constant t ime per rank root . Now we go th rough the
merged list backwards, pairing neighboring rank roots wi th
common ranks, insert ing the new root at most two ahead in
the sorted list. Finally, we make a new connect ing path. All
the above is done in t ime O(log n).
Adding a s t ruc tura l child is like the tr ivial case of merging
with a single rank tree consisting of a single node, and is
hence also done in O(log n) t ime.
Removing a child b f rom a is very similar to merging. Firs t
we remove the connect ing pa th from a. This leaves us wi th
a sorted list of rank trees, f rom which we pull out the rank
tree Rb containing b. We now remove from Rb the p a t h from
b to the rank root . This leaves us wi th a sor ted list of rank
subtrees of Rb tha t we can now merge wi th the remaining
rank trees as described above in t ime O(log n).
Concerning our tree and non- t ree b i tmaps , we need to up-
da te them at the O(log n) local nodes affected by the struc-
tural change. The upda tes are done bo t tom-up . Each up-
da te is a constant t ime bitwise 'or ' of the b i tmaps at the two
children in C L. Also, we need to upda t e the b i tmaps at the

346

O(log n) nodes above the s t ruc tura l parent of an added or
deleted node.
All par ts of our implementa t ion spend O(log n) t ime per
edge level change, of which we have O(log n) per edge, so
the to ta l cost per edge is O((log n)2). Further , we get l inear
space if we suppress all nodes in C with one child.

PROPOSITION 2. We can maintain a spanning forest of
a fully-dynamic graph over n nodes in O(log 2 n) amortized
time per update using linear space.

In the following sections, we will now show how to im-
prove almost all the O(log n) costs from this section to
O((log log n)2).

5. LAZY LOCAL TREES
In this section, we are going to present a more lazy version
of the local tree, where the vast major i ty of the changes are
confined to poly- logar i thmical ly sized subtrees with opera-
tion t ime O(log log n).
Let /3 be the set of children of a in C. As in §4.4, a local
tree is a binary tree wi th leaf set B and root a, and C L is
the result of replacing for each a E C, the children pointers
with the local tree L(a).
The children in B are divided into groups of size at most
2(log n) ~, where ~ > 2 is a constant to be determined later.
Over each of these groups, we have a s tandard search tree
with opera t ion t ime O(log(2(log n)~)) = O (l o g l o g n) . One
of the small search trees is called the buffer tree, while the
o ther are called bottom trees. A root of a bo t tom tree has a
rank tha t is the max imal rank of a descending b E B, where,
as in in §4.4, the rank of b is rank(b) --- [log n(b)J. All the
ranked roots of the b o t t o m trees are now collected in rank
trees exact ly as described in §4.4, tha t is, two roots of the
same rank r get paired under a new root with rank r + 1.
At the end we have _< log n different rank roots, and these
together wi th the root of the buffer tree form the leaves of
a s tandard search t ree wi th root a. We call this last search
tree the top tree, and like the b o t t o m and buffer trees, the
top tree has opera t ion cost O(log log n).

LEMMA 3. The height of e L is O(1og n log log n).

PROOF. Let b be a s t ruc tura l child of a in C. T h e n the
top, bo t tom, and buffer trees contr ibutes O(log log n) to the
depth of b in L(a), while the rank tree contr ibutes at most
log(n(a)/n(b)). []

For each nodes in a top tree, we will have a b i tmap telling
the ranks of rank roots below it. When merging a wi th b in
a, we make a bitwise ' and ' of the b i tmaps at their top roots
to see which ranks they have in common. The corresponding
rank roots are identified and paired up in O(loglog n) t ime
per pairing. Also, we merge the buffer trees. If the result ing
buffer tree gets more than (log n) ~ leaves, we turn it into a
new b o t t o m tree, leaving an empty buffer tree. The root of
the new b o t t o m tree forms a trivial rank tree tha t we may
have to pair up.
When adding a s t ruc tura l child, we jus t put it under the
buffer tree. As under merge, we turn the buffer tree into a
bo t tom tree if it gets more than (log n) ° leaves.
If we delete a s t ruc tura l child which is not of maximal rank
in its b o t t o m tree, this does not affect the rank trees, so we
only pay a purely local cost of O(log log n) for re-balancing

its b o t t o m tree. However, if the child delet ion does decrease
the rank of the root a of its b o t t o m tree, we delete all rank
nodes above a. The deletion is done top clown so tha t any
rank node deleted is a rank root. Now the O(log n) previous
sibfings of ancestors of a are new rank roots. As under
merge, we may have to pair these new rank roots wi th o ther
rank roots.

LEMMA 4. Each change in C gives rise to O (l o g l o g n)
changes in the top, bottom, and buffer trees. Moreover, each
change in the rank trees is amortized over (log n) °-2 changes
in C.

PROOF. The immedia te cost of each change in C is
O(loglog n) changes in the top, bo t tom, and buffer trees.
All o ther changes in the top, bo t tom, and buffer trees are
amort ized over changes in the rank trees.
From an amor t iza t ion perspect ive, we can assume tha t the
graphs ends empty, which also means tha t all rank nodes
end up being deleted. Thus creations of rank. nodes can be
amort ized over deletions of rank nodes.
Deletions of rank nodes only happen when a b o t t o m tree
root decreases its rank. For each such decrease, we loose
at most log n rank roots. However, the max imal rank is
logn , bounding the number of t imes a b o t t o m tree root
can decrease its rank. Thus, each b o t t o m tree can give rise
to (logn) ~ rank root deletions. However, a b o t t o m tree is
s ta r ted with at least (log n) ~ leaves, all of which will be
deleted eventually. Hence, we conclude tha t each rank root
deletion can be amor t ized over ('tog n) ~-2 s t ruc tu ra l child
deletions. []

6. LEVEL INDUCED FORESTS
We are now going to address the problem of identifying in-
cident tree edges as in §4.3 in O((log log n) 2) t ime per edge
found.
Abstract ly, for each level i, we will main ta in a i-induced
forest Si. T h e / - i n d u c e d leaves are the vertices of G with an
incident level i t ree edge. The / - induced roots are the level
i + 1 nodes a 6 C with a descending /- induced leaf. Finally,
t h e / - i n d u c e d branch node is a node a E C L below or equal
to a n / - i n d u c e d root wi th / - induced leaves descending from
two different children. T h e / - i n d u c e d paren t of a n / - i n d u c e d
node is its nearest / - induced ancestor. Since C L is binary,
so is S~.
Our goal is to get be tween neighboring / - induced nodes in
O((log log n) ~) time. Then, given a pointer to t h e / - i n d u c e d
leaf y, we can find all / - induced nodes connected to y in Si
in O((log log n) 2) per node, hence in O((log log n) 2) t ime per
/- induced leaf. This includes t h e / - i n d u c e d root yi+l and the
/- induced leaves, which are exactly the vertices connected to
y in Fi+l with an incident level i t ree edge.

7. SHORT CUTTING
An i-induced trace path is a pa th in G L from a child in C z
of a n / - n o d e to its nearest descending i- induced node. Our
goal is to make it quick to move between end-points of t race
paths. To this end, we are going to main ta in a system of
short cuts.
First we associate a power p(a) _< 2 log log n to all nodes in
C L. Nodes interior to bo t tom, top, and buffer trees all get
p o w e r 0 . I f a E G z i s a r a n k n o d e with r a n k i > 0, ~(a) is
the least significant bit of i, or equivalently, the maximal j

347

for which 2 j divides i. If a ha s r a n k 0, p (a) = log log n. Let
p c = log log n 9- 1. Finally, for v i E C, p (a) is p c plus the
leas t s ignif icant b i t of i, or 0 if i = 0.
Suppose a is a n ances to r of b a n d all nodes be tween a a n d b
have power s t r ic t ly smal le r t h a n q = m i n { p (a) , p(b)}. T h e n
(a, b) is a short cut of power q unless one of a a n d b is in C
a n d the o t h e r is a r a n k node . Note t h a t the arcs in C L are
exact ly the sho r t cu ts of power 0, a n d we refer to t h e m as
the trivial short cuts. If b o t h end-po in t s of a shor t cut are
in C, we call i t a structural short cut.
We say a sho r t cu t (a, b) short cuts a p a t h P if a a n d b are
in P . A s h o r t cu t (a ,b) is a s u b c u t o f a s h o r t cut (c ,d) if
(a, b) shor t cu ts the p a t h f rom a to b.

LEMMA 5. Ira is an ancestor orb, the maximal short cuts
of the path from a to b in C form a path of length O(log log n)
from a to b.

PROOF. T h e wors t case is if t he p a t h moves f rom a top
t ree to a r a n k t ree, to a b o t t o m tree, to C, to a top tree, to a
r a n k t ree, to a b o t t o m tree. In each of these t rees, we follow
O (l o g l o g n) shor t cuts , a n d the re are a t mos t 5 t rees. []

LEMMA 6. The total number of short cuts is
O(ICLl log log n).

PROOF. For each power q, the shor t cu ts fo rm a forest
over the nodes in C L. []

A n i-induced short cut is e i the r a t r iv ia l sho r t cu t f rom a n
/ - induced to i ts child in C L, or a m a x i m a l shor t cu t over
s o m e / - i n d u c e d t r ace p a t h s .
By a level induced short cut we general ly refer to a n i-
i nduced sho r t cu t for some i. We will m a i n t a i n all level
shor t cuts , a n d for each level sho r t cu t , we will have a b i t m a p
tel l ing us for which i i t is a n / - induced shor t cut .
Cons ider any n o d e a E C. For each i, a is in a t mos t one
/ - induced t r ace p a t h , so a can have a t mos t one upwards a n d
one downwards non- t r iv i a l / - induced shor t cu t . Also, since
C L is b inary, so a has a t mos t two downwards t r iv ia l shor t
cuts . Hence t he re are a t m o s t 2 log n + 2 level shor t cuts
inc ident to a, so a s t a n d a r d search t ree will allow us to f ind
a n u p w a r d s or downwards l e v e l / - i n d u c e d shor t cut f rom a,
if any, in O(log log n) t ime. C o m b i n i n g th i s w i th L e m m a 5,
gives

LEMMA 7. We can f ind the i-induced parent and i-
induced children of any i-induced node in O ((l o g l o g n) 2)
time.

As discussed a t t he end of §6, L e m m a 7 immed ia t e ly tells
us how to f ind t he Size f rom §4.3 in O((log log n) 2) t ime pe r
level / - t ree edge in T~.
As the sho r t c u t t i n g s t r u c t u r e changes , we will of ten need
to make searches w i th in a t r ace p a t h . To th is end, we will
m a i n t a i n the base cuts which are all s ubcu t s of level induced
shor t cuts . In our account ing , we will only pay for c rea t ing
base cuts , b u t no t for de le t ing t h e m .

8. INDUCED LEVEL INCREASES
Having ident i f ied t he /-level t ree edges of the smal ler t ree
Tv, we w"ant to increase the i r levels to i + 1. Th i s leads to
two subprob lems : m o v i n g incidence i n f o r m a t i on f rom Si to
S i+ l , a n d merg ing some level i + 1 nodes . In th is sect ion,
we deal w i t h t he fo rmer p rob lem.

We are given a node x i+1 on level i + 1 . Loosely speak ing we
wan t to take t h e / - i n d u c e d t ree T r o o t e d in x i+1 a n d merge
T in w i th S i+ l . For space reasons, we r e s t r i c t ourselves to
the simple, b u t i l lus t ra t ive , case where T has only one leaf
Z.
Our first s tep is to look for the level i + 2-node a which is
the s t r u c t u r a l child of x i+1 above z. Since i + I - i nduced
roo ts are on level i + 2, ou r first n a t u r a l s tep is to move the
/ - induced shor t cuts over T down to be m a x i m a l shor t cu ts
f rom a to z.
If t he / - induced down-going shor t cu t f rom x i+1 ha s power
<_ p c , we can s imply follow the / - induced sho r t cu ts down
f rom x i+1 unt i l we h i t t he level i + 2-node a. All / - induced
shor t cuts e n c o u n t e r e d above a are i-canceled, m e a n i n g t h a t
we unse t the / -bi t in the level shor t cut , poss ibly r emov ing
the level shor t cut if th is was t he las t set bi t .
Suppose i n s t ead t h a t the / - induced clown-going shor t cu t
(xi+l,b) f rom x i+1 has power > p c . T h e n b is a d e s c e n d a n t
of the desired level i + 2 node a. We t h e n i-push (xi+l,b) ,
mean ing t h a t we replace i t w i th i ts i m m e d i a t e subcu t s . T h e
i m m e d i a t e subcu t s are found by first going to b a n d t h e n
follow up the base cu ts of m a x i m a l power < p(x i+1 , b) un-
til we h i t x I+1. T h e base cu ts followed are t he i m m e d i a t e
subcu t s t h a t we now m a k e / - i n d u c e d sho r t cuts . Finally, we
i -cancel (x i+1, b). Af te r a t mos t log log n pushes , we end up
w i th a shor t cut (x i+l ,a) t h a t we j u s t i -cancel . I t is qui te
easy to see t h a t all t h e / - i n d u c e d shor t cu ts c rea ted , excep t
for (x i + l , a) , are m a x i m a l sho r t cu ts of the p a t h f rom a to
z, as desired.
If a is no t a l ready a n i + 1- induced root , we s imply take
all t he / - induced shor t cu ts below a a n d m a k e t h e m i + 1-
induced, u n s e t t i n g the / -bi t a n d se t t i ng t he i + 1-bit.
Suppose a is a l ready an i + 1- induced root . We t h e n wan t
to f ind the las t node b on the p a t h f rom a to z w i t h a n i + 1-
induced descendan t . T h e n b should b e a new i + 1- induced
b r a n c h node. T h e a lgo r i t hm works recursively, a s suming
t h a t a ha s b o t h i- a n d i + 1- induced sho r t cuts .
Since the leaf z is the o n l y / - i n d u c e d node below a, we know
t h a t the power of t he downgoing / - induced sho r t cu t (a, a ')
is a t least as big as t h a t of t he downgoing i + 1- induced sho r t

cut (a, a").
LEMMA 8. a' has i + 1-induced descendants if and only if

it has an incident i + 1-induced short cut.

PROOF. By defini t ion, we c a n n o t have a s h o r t cu t (c, d)
w i th c a s t r ic t ly b e t w e e n a a n d a ' a n d d s t r ic t ly below a ~. []

T h u s if a ' has a n inc iden t i + i - i n d u c e d sho r t cut , we s imply
/ -cancel (a, a') a n d r e p e a t f rom a ' .
Supose a ' has no inc iden t i + 1- induced sho r t cut . If (a, a ~)
a n d (a, a ") b o t h are tr ivial , a is our new i + l - i n d u c e d b r a n c h
node b. T h e n we comple te the merge by t ak ing a l l / - i n d u c e d
shor t cuts below a a n d make t h e m i + i - i nduced . Otherwise ,
if (a, a ') a n d (a, a ") have the same power we p u s h t h e m b o t h ,
a n d if (a, a ') has the b igger power, we j u s t p u s h (a, a ') . In
e i the r case we r e p e a t f rom a a f t e r the push .

LEMMA 9. When T has a single leaf, it takes
O((log log n) 2) time to merge T in with Si+l.

PROOF. General ly, i t cost O(log log n) t ime to m a n i p u l a t e
a shor t cut . T h e essent ia l obse rva t ion is t h e n t h a t we have
b e e n f o l l o w i n g / c r e a t i n g / d e l e t i n g sho r t cu t p a t h s of l enght
a t mos t log log n f rom x i+1 to the level i + 2 node a, f rom a
to the new i -I- I - b r a n c h node b, a n d f rom b to z. []

348

9. THE STRUCTURAL CHANGES
Pre tending tha t there are no non- t ree edges, we will now
explain how to preserve our level induced short cuts during
s t ructura l changes.
When removing or adding a s t ruc tura l child a of b, techni-
cally it is very convinient to require tha t a is a root in C L

with power 0. The la ter implies tha t there are no s t ructura l
level induced short cuts f rom a. Similarly, when merging a
node a wi th a node b, we require tha t bo th a and b are roots
of C L of power 0.
In the .following, for i > g (v , w), set u i to be the current
node v ' = w' . T h a t is, u ' will keep point ing to this node in
C L no m a t t e r the changes we make to C L.

Now, for i = O, .., g (v , w) - l , we push the power of u i down to
0 and remove u TM from its s t ruc tura l parent u i. Afterwards,
for i = g(v, w), we puch the power of u i down to 0, remove

i • . - v +1 and w '+1 from their s t ruc ture parent u ' , and finally, we
push the power of v TM a n d w TM down to 0. Af te r the above
procedure, each u i has lost exactly the s t ructura l children
tha t are ancestors of v or w.
Now, inductively, when recover is called for i = g(v , w), ..., 1,
our s tar t ing point will be tha t we have pointers to v TM and
w '+1, bo th of which are roots of power 0. Also, if i > 0, we
have a pointer to the previous parent u i of v TM a n d w TM.
All nodes below level i + 1 are assumed to have the powers
specified in §7. Since S~ is roo ted at level i + 1 we can still
move b e t w e e n / - i n d u c e d nodes in O((log log n) 2) time.
During the recover on level i, when merging level i + 1 nodes,
first we need to push their power, and remove them from
their s t ruc tura l parent u ~. Af te r the merges, v TM covers T~.
T h e n we pop the powers of w i+1 a n d v ~+1 back up to the
value specified in §7, and add w TM back as a child of u i.

If a replacement edge was found, we also add v I+1 back as
a child of u i, and then, for i = g(v, w), ..., 1, we push the
power of u i back up and add it back as a child of u i-1 .
If no replacement edge was found, v i is created with power
0 a n d v i+1 as only child. Since w i+1 has been added back
under u i, w i = u i. If i : 0, we are done since nodes on level
0 have power 0. Otherwise, we can now call recover on level
i - 1 wi th pointers to v i, w i, a n d u i -1 .

9.1 Pushing and popping powers
When pushing the power of a node a to 0, a is always a
root node. The pushing is done as follows. While there
is a down-going level induced short cut of posit ive power,
we pick a level induced short cut (a, b) of maximal power
q. Then, for each immedia te subcut (c ,d) of (a,b), we set
tree(c, d) := tree(c, d) V tree(a, b). The immedia te subcuts
are each found in O(log log n) t ime by going down to b and
moving back up to a along base cuts of maximal power < q.
Finally, the level induced short cut (a, b) is removed. Since
(a, b) was of maximal power and a was a root, (a, b) is not a
subcut of any o ther level short cut. Hence we remove (a, b)
as a base cut. This actual ly pays for the push because we
pay to create base cuts bu t not to removing them. The
process is r epea ted unti l the maximal power of a downgoing
level short cut is 0.
Popping is much more subtle. However, observe tha t all
nodes popped are ancestors of v and w in the final tree. Ig-
noring the problem of identifying the short cuts, the l emma
below states t ha t the to ta l number of level short cuts and
base cuts incident to all these ancestors is sufficiently lim-
i ted given tha t we have O(log n(log log n) 2) t ime av~lable

for an edge deletion.

LEMMA 10. F o r a n y v e r t e x v in G , the t o ta l n u m b e r o f

leve l i n d u c e d s h o r t c u t s a n d base c u t s i n c i d e n t to a n c e s t o r s
o f v in C L is O(log n log log n).

PROOF. Let P be the pa th in C L from v to the root.
T h e n P has length O(log n log log n), so the to ta l number of
short cuts of P , including all level induced short cuts and
base cuts, is O(log n log log n). The number of tr ivial short
cuts leaving P is also bounded by the length, so it only
remains to bound the number of non-t r iv ia l level induced
short cuts and base cuts leaving P . Consider any level i, and
let (a, b) be a non-tr ivial level / - induced short cut leaving
P. The (a,b) short cuts an / - induced t race path. Let c
be the last node from P in the pa th from a to b. T h e n c
is the unique last node in P with a descending /- induced
leaf. Since no node is contained in more than one / - induced
trace path, we conclude tha t there is at most one i - induced
short cut leaving P. Similarly, for each power < p ((a , b)),

there is exactly one subcut of (a, b) leaving P ; namely the
one passing c, so (a, b) has only O(log log n) subcuts leaving
P. []

9.2 Merging etc.
Merging and adding s t ructura l children is very simple. We
know tha t the roots involved have power 0, so we only need
to worry about short cuts wi thin the local tree. T h e n the
only non-tr ivial short cuts are over the rank trees. The im-
por tan t observation now is tha t a merge or child addi t ion
does not affect the subtree below any existing rank node.
Thus, merging and child addit ions can only create prob-
lems when rank nodes are crea ted or deleted. However, by
L e m m a 4, if we set a _> 3, we only delete or create one rank
root node per O(log n) s t ruc tura l changes. This means tha t
we have plenty of t ime to upda te the short cu t t ing around
the affected rank nodes.
Child deletions are somewhat more tricky. For each i, we
will assume a potent ia l of 1 at every / - induced branch node
within a rank tree, added when the branch node was created.
To see tha t this is valid, note tha t when a node in a rank
tree becomes / - induced it is e i ther because of a level increase,
or because the rank node is c rea ted as in L e m m a 4. In the
la t te r case, we need at most a potent ia l of 1 for each i, which
is is done by set t ing a > 3.
Let b be a node go be deleted. If b is a leaf of a buffer tree,
the deletion is trivial, so suppose b is a leaf of a b o t t o m tree
with root r, and let r* be the root of the rank tree above r.
When b is deleted, in O ((l o g l o g n) 2) time, we upda te the
b i tmaps up to r. Suppose this causes some bit tree(b)[j] to
be unset. T h a t is, suppose tha t b was the only leaf in the
b o t t o m tree tha t had a j - induced descendant .
Suppose r was the only leaf in the rank tree wi th a j - induced
descendants. This means tha t the p a t h f rom r up to r* is
a j - induced trace path, so we can follow the p a t h up using
O(log log n) level short cut of maximal power. Conversely,
this means tha t we can identify all such j by following max-
imimal level short cuts up from r in O((log log n) 2) time,
and since the j share these level short cuts, we can cancel
them all in O((log log n) 2) time.
It remains to deal with the case where r is not the only leaf in
the rank tree wi th a j - induced descendants. In this case, we
jus t have to cancel the j - shor t cuts up to the first j - induced
branch node c above r. T h e n c is no longer a j - b r a n c h node,

349

and hence we need to pop the j -shor t cuts incident to c so as
to get a proper short cutt ing of the j - t race pa th now going
though c. All this takes O((loglog n) 2) time, and is paid by
the cancellation of c as a j -b ranch node.

10. THE NON-TREE EDGES
The main problem in dealing with the non-tree edges is that
we want to provide a reasonably uniform sampling as de-
scribed in §3. What we need for / - induced short cut is an
i-induced weight telling how many level i tree edges are inci-
dent to vertices below it. At first this kills everything done
so far because we have been able to store information for all
levels in a single bi tmap.
We now make the first simple observation, that it suf-
fices with approximate counting. Generally counters will
be added up along a pa th of lenght O(log n log log n) and
we can allow each addition to make a mistake by a factor
(1 + (log n) -2) . This means that it suffices to use floats with
O(log logn) bits of precission. This in turns means that we
can store the log n weights in float maps distributed over
O(loglog n) words. It is straightforward to, say, add two
float maps in O(log log n) time.
Our second much more challenging problem when dealing
with the weights is that every time a new level i non-tree
edge arrives or disappears, we have update the /-induced
weight counters above it. For weights bigger than (log n) 3,
however, the approxmate counting means we are allowed an
absolute error of log n.
For i-induced weights smaller than (log n) 3, we introduce a
system of heavy paths. A child in Si is heavy if i t s / - induced
weight is more than twice that of its sibling. Heavy paths
are now formed by the paths from parents to their heavy
children, and for each heavy pa th we have an extra efficient
short cutt ing system for the / - induced weights.
Now, when a level i non-tree edge arrives or disappears,
for each end-point, we update the /-induced weights along
O(loglogn) heavy paths, until we arrive at a big weight of
size (log n) 3. Spending O((log log n) 2) t ime per heavy path,
the update up to the big weight takes O((loglog n) 3) time.
At the big weight we wait and accumulate log n changes be-
fore we update the / - induced weights higher up. The higher
up /-induced weights can be upda ted in O(log n(log log n) 2)
time, hence in O((log logn) ~) time per edge level change.
Thus, the total cost per edge level change is O((log log n)3).
The integration of these sketchy ideas for weight main-
tainance with the structural changes is postponed to the
journal version of this paper. The total cost per edge level
change will be kept at O((loglog n)3), implying a random-
ized fully dynamic connectivity algorithm maintaining a
spanning forest in O(log n(log log n) 3) expected amortized
time per update.
In the journal version, it will also be shown that the floating
point weight idea improves the deterministic time complex-
ity for the 2-edge and biconnectivity in [6] from O((log n) 4)
to O((log n) 3 log log n).

11. REFERENCES

[1] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig. Sparsification - - a technique for speeding
up dynamic graph algorithms. J. ACM, 44(5):669-696,
1997. See also FOCS'92.

[2] G. N. Frederickson. Data structures for on-line up-
dating of minimum spanning trees, with applica-
tions. SIAM J. Comp., 14(4):781-798, 1985. See also
STOC'83.

[3] M. Fredman and M. Henzinger. Lower bounds for fully
dynamic connectivity problems in graphs. AIgorithmica,
22(3):351-362, 1998.

[4] M. R. Henzinger and V. King. Randomized dynamic
graph algorithms with polylogarithmic time per opera-
tion. In Proc. 27th STOC, pages 519-527, 1995.

[5] M. R. Henzinger and M. Thorup. Sampling to provide
or to bound: With applictions to fully dynamic graph
algorithms. Rand. Struct. Algor., 11:369-379, 1997. See
also ICALP'96.

[6] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2=edge, and bi-
connectivity. In Proc. 30th STOC, pages 79-89, 1998.

[7] P. B. Miltersen, S. Subramanian, J. S. Vitter, and
R. Tamassia. Complexity models for incremental com-
putation. Theor. Comp. Sc., 130(1):203-236, 1994.

[8] D. Sleator and R. Tarjan. A da ta structure for dynamic
trees. J. Comp. Syst. Sc., 26(3):362-391, 1983. See also
STOC'81.

[9] R. E. Tarjan. Efficiency of a good but not linear set
union algorithms. J. ACM, 22:215-225, 1975.

[10] M. Thorup. Decremental dynamic connectivity. In
Proc. 8th SODA, pages 305-313, 1997.

350

