STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM -224

'STAN-CS-73-403

HINTS ON PROGRAMMING LANGUAGE DESIGN
BY

C. A. R. HOARE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
- ARPA ORDER NO. 24v4
PROJECT CODE 3D30

DECEMBER 1973

COMPUTER SCIENCE DEPARTMENT
- Sc hool of Humanities and Sciences
)IANFORD UNIVERSITY
/

STANFORD ARTI FI G AL | NTELLI GENCE LABORATCORY OCTOBER 1973
MEMO Al M 224

COWPUTER SCI ENCE DEPARTMENT REPCRT NO. CS-403

H NTS ON PROGRAMMING LANGUAGE DESI GN

C. A R HoareX/
ABSTRACT:

Thi s paper (Based on a keynote address presented at the SIGACT/SIGPLAN
Synposi um on Principles of Programmng Languages, Boston, Cctober 1-3,
1973) presents the view that a programmng |anguage is a tool which shoul d
assist the programmer in the nost difficult aspects of his art, nanely
program design, documentation, and debugging. It discusses the objective
criteria for evaluating a | anguage design, and illustrates them by
application to |l anguage features of both high |evel |anguages and
machine code programming. It concludes with an annotated reading list,
recommended for all intending |anguage designers.

*/ On leave of absence fromthe Queen's University of‘ Belfast.

The work on this paper was supported in part by the National Science
Foundation under grant number GJ 36473X and by ARPA Research Contract
DAHC 15-73-C-0k35. The views expressed are those of the author.

[ntroduction

| would like in this paper to present a philosophy of the design
and eval uation of programm ng | anguages which | have adopted and
devel oped over a nunber of years, nanely that the primary purpose of
a programm ng | anguage is to help the programer in the practice of his
art. | do not wish to deny that there are many other desirable properties
of a programmi ng |anguage, -- for exanple, machine independence, stability
of specification, use of famliar notations, a large and useful library,
existing popularity, or sponsorship by a rich and powerful organization
These aspects are often dominant in the choice of a programm ng | anguage
by its users, but | wish to argue that they ought not to be. | shal

therefore express nyself strongly. | fear that each reader will find
sone of ny points wildly controversial; | expect he will find other
points that are obvious and even boring; | hope that he will find a

few points which are new and worth pursuing
My approach is first to isolate the nost difficult aspects of the
programrer's task, and state in general terns how a progranm ng | anguage

design can assist in nmeeting these difficulties. | discuss a nunber of
goal s which have been followed in the past by |anguage designers, and
which | regard as conparatively irrelevant or even illusory. | then

turn to particular aspects of familiar high | evel programing |anguages,

and explain why they are in sone respects nuch better than machine code

programming, and in certain cases worse. Finally, | draw a distinction

bet ween | anguage feature design and the design of conplete |anguages.

The appendi x contains an annotated reading list; | recommend it as a

general educational background for intending | anguage designers of the
~future

The formof this paper owes nuch to the kind suggestions of
Don Knuth.

2. Principles
If a programmng |anguage is regarded as a tool to aid the programrer

it should give himthe greatest assistance in the nmost difficult aspects
of his art, namely program design, docunentation, and debugging.

° Program Desi gn

The first and very difficult aspect of design is deciding what the
programis to do, and fornulating this as a clear, precise, and acceptable
specification. Oten just as difficult is deciding howto do it, -- how
to divide a conplex task into sinpler subtasks, and to specify the purpose
of each part, and define clear, precise, and efficient interfaces between

them A good programming | anguage shoul d give assistance in expressing
not only how the programis to run, but what it is intended to acconplish
and it should enable this to be expressed at various |levels, fromthe
overall strategy to the details of coding and data representation. It
shoul d assist in establishing and enforcing the programing conventions
and disciplines which will ensure harmoni ous cooperation of the parts of
a large program when they are devel oped separately and finally assenbl ed
together. --

m Progranm ng Docunent ati on

The purpose of program docunentation is to explain to a human reader
the way in which a program works, so that it can be successfully adapted
after it goes into service, either to neet the changing requirements of
its users, to inprove it in the light of increased know edge, or just to
renove latent errors and oversights. The view that docunentation is
sonething that is added to a programafter it has been conm ssioned seens
to be wong in principle and counterproductive in practice. Instead,
docunentation nust be regarded as an integral part of the process of
design and coding. A good programming |anguage will encourage and assi st
the programmer to wite clear self-documenting code, and even perhaps

~to develop and display a pleasant style of witing. The readability of
" prograns is immeasurably more inportant than their witeability.

° Pr ogr am Debuggi ng

Program debuggi ng can often be the nost tiresome, expensive, and
unpr edi ct abl e phase of program development, particularly at the stage
of assenbling subprograms witten by many programmers over a |ong period.
The best way to reduce these problems is by successful initial design of

the program and by careful documentation during the construction of

code. But even the best designed and documented programs will contain
errors and inadequacies which the conputer itself can help to elimnate

A good programming |anguage will give maxi num assistance in this. Firstly,
the notations shoul d be designed to reduce as far as possible the scope
for coding error; or at |east to guarantee that such errors can be
detected by a conpiler, before the program even begins to run. Certain
programmng errors cannot always be detected in this way,and nust be cheaply
detectable at run tine; in no case can they be allowed to give rise to
machi ne or implementation dependent effects, which are inexplicable in
terms of the language itself. This is a criterion to which | give the
name "security". O course, the conpiler itself nust be utterly reliable,
so that its user has conplete confidence that any unexpected effect was
obtained by his own program And the conmpiler nust be conpact and fast,
so that there is no appreciable delay or cost involved in correcting a
programin source code and resubmtting for another run; and the object
code too should be fast and efficient, so that extra instructions can be
inserted even in large and tine-consumng programs in order to help

detect their errors or inefficiencies.

A necessary condition for the achi evenment of any of these objectives
is the utnost sinplicity in the design of the |anguage. Wthout sinplicity,
even the | anguage designer hinself cannot eval uate the consequences of his
design decisions. Wthout sinplicity, the conpiler witer cannot achieve
even reliability, and certainly cannot construct conpact, fast and
-efficient compilers. But the main beneficiary of sinplicity is the user
of the language. In all spheres of human intellectual and practica
activity, from carpentry to golf, from sculpture to space travel, the
true craftsman is the one who thoroughly understands his tools. And this
applies to programmers too. A programmer who fully understands his
| anguage can tackle nore conplex tasks, and conplete them qui cker and
nore satisfactorily than if he did not. In fact, a programrer's need
for an understanding of his |anguage is so great, that it is al nost

i mpossible to persuade himto change to a new one. No matter what the
deficiencies of his current |anguage, he has learned to live with them

he has learned howto mtigate their effects by discipline and docunenta-
tion, and even to take advantage of themin ways which woul d be inpossible
in a new and cleaner |anguage which avoided the deficiency.

It therefore seems especially necessary in the design of a new
programmng |anguage, intended to attract programmers away from their
current high level language, to pursue the goal of sinmplicity to an
extreme, so that a programrer can readily learn and remenber all its
features, can select the best facility for each of his purposes, can
fully understand the effects and consequences of each decision, and can
then concentrate the major part of his intellectual effort to understanding
his problemand his prograns rather than his tool

A high standard of sinplicity is set by the machine or assenbly
code progranming for a small conputer. Such a nachine has an extrenely
uni form structure, for exanple, a main store consisting of M words
nunmber ed consecutively fromzero up, a fewregisters, and a sinple
synchronous standard interface for comunication and control of periphera
equipment. There is a small range of instructions, each of which has a
uniform format; and the effect of each instruction is sinple, affecting
at nost one register and one |ocation of store or one peripheral. Even
nore inportant, this effect can be described and understood quite
i ndependently of every other instruction in the repertoire. And finally,
the programmer has an imediate feedback on the compactness and efficiency
of his code. Enthusiasts for high level |anguages are often surprised at
the conplexity of the problems which have been tackled with such sinple
tools.

On larger nodern conputers, with conplex instruction repertoires
and even nore conplex operating systems, it is especially desirable that
a high level language design should aimat the sinplicity and clear
nodul ar description of the best hardware designs. But the only widely
used |anguages which approach this ideal are FORTRAN, LISP and ALGOL 60,
and a few languages developed fromthem | fear that nost nmore nodern
programm ng | anguages are getting even nore conplicated; and it is
particularly irritating when their proponents claimthat future hardware
designs should be oriented towards the inplementation of this conplexity.

3. Di scussi on

The previous two sections have argued that the objective criteria
for good |anguage design may be summarized in five catch phrases:
sinplicity, security, fast translation, efficient object code, and
readability. However desirable these may seem many |anguage designers
have adopted alternative principles which belittle the inportance of
sone or all of these criteria, perhaps those which their own |anguages
have failed to achieve

3.1 Sinplicity

Sone | anguage designers have replaced the objective of sinplicity
by that of nodularity, by which they mean that a programer who cannot
understand the whole of his |anguage can get by with a limted under-
standing of only part of it. For programs that work as the progranmer
intended this may be feasible; but if his program does not work, and
accidental |y invokes sone feature of the |anguage which he does not know,
he will get into serious trouble. If he is lucky, the inplenentation
will detect his mstake, but he will not be able to understand the diagnostic
message. (Qtherwise, he is even nore helpless. If to the complexity
of his language is added the conplexity of its inplementation, the
conmpl exity of its operating environnent, and even the conplexity of
institutional standards for the use of the language, it is not surprising
that when faced with a conplex programm ng task so many programmers are
over whel ned.

Anot her replacenment of sinplicity as an objective has been
orthogonality of design. An exanple of orthogonality is the provision
of conplex integers, on the argument that we need reals and integers and
conplex reals, so why not conplex integers? In the early days of hardware
design, some very ingenious but arbitrary features turned up in order
codes as a result of orthogonal conbinations of the function bits of an
instruction, on the grounds that some clever programrer would find a use
for them -- and some clever programer always did. Hardware designers
have now |earned nore sense; but |anguage designers are clever progranmmers
and have not.

The principles of nmodularity, or orthogonality, insofar as they
contribute to overall sinplicity, are an excellent neans to an end
but as a substitute for sinplicity they are very questionable. Since in
practice they have proved to be a technically nmore difficult achievement
than sinplicity, it is foolish to adopt themas primary objectives.

3.2 Security
The objective of security has also been widely ignored; it is

bel i eved instead that coding errors should be renoved by the programer
with the assistance of a so-called "checkout? conpiler. But this

approach has several practical disadvantages. For exanple, the debugging
conpi l er and the standard conpiler are often not equally reliable. Even
if they are, it is inpossible to guarantee that they will give the sane
results, especially on a subtly incorrect program and when they do not,
there is nothing to help the progranmer find the mstake. For a large
and complex program the extra inefficiency of the debugging runs may be
serious; and even on small progranms, the cost of loading a |arge debugging
system can be high. You should always pity the fate of the programer
whose task is so difficult that his programw |l not fit into the conputer
together with your sophisticated debugging package. Finally, it is

absurd to make el aborate security checks on debuggi ng runs, when no

trust is put in the results, and then remove them in production runs

when an erroneous result coul d be expensive or disastrous. \Wat woul d

we think of a sailing enthusiast who wears his |ifejacket when training
on dry land, but takes it off as soon as he goes to sea? Fortunately,
with a secure | anguage the security is equally tight for production and
for debugging.

3.3 Fast Translation

In the early days of high level |anguages it was openly stated that
speed of conpilation was of mnor importance, because prograns woul d be
conpi led only once and then executed many tinmes. After a while it was
realized that the reverse was often true, that a program would be conpiled
frequently while it was being debugged; but instead of'constructing a fast

translator, |anguage designers turned to independent conpilation, which
permts a programer to avoid reconpiling parts of his program which he
has not changed since the last time. But this is a poor substitute for
fast conpilation, and has many practical disadvantages. Oten it
encourages or even forces a progranmer to split a large programinto
modul es which are too small to express properly the structure of his
problem It entails the use of w de interfaces and cunbersone and
expensive paranmeter lists at inappropriate places. And even worse, it
prevents the conpiler from adequately checking the validity of these

interfaces. It requires additional file space to store bulky internediate
code, in addition to source code which nmust, of course, never be thrown
away. It discourages the programer from naking changes to his data

structure or representation, since this would involve a heavy burden of
reconpilation,. And finally the linkage editor is often cunmbersone to
invoke and expensive to execute. And it is all so unnecessary, if the
conpi ler for a good |anguage can work faster than the |inkage editor
anyway.

If you want to make a fast conpiler even faster still, I can suggest
three technniques which have all the benefits of independent conpilation
and none of the disadvantages.

(1) Prescan.

The slowest part of a nmodern fast conpiler is the |exical scan
which inputs individual characters, assenbles theminto words or numbers
identifies basic synbols, renoves spaces and separates the comments. |f
the source text of the programcan be stored in a conpact formin which
this character handling does not have to be repeated, conpilation tine
may be halved, with the added advantage that the original source program
may still be listed (with suitably elegant indentation); and so the
amount of file storage is reduced by a factor considerably greater than
two. A simlar technique was used by the PACT | assenbler for the 1BM 701.

(2) Precompile.

This is a directive which can be given to the conpiler after submtting
any initial segment of a large program It causes the conpiler to nake
a conplete dunp of its workspace including dictionary and object code, in

a specified user file. Wen the user wishes to add to his program and
run it, he directs the conpiler to recover the dunp and proceed. Wen
his additions are adequately tested, a further precompile instruction
can be given. If the programrer needs to nodify a precompiled procedure,
he can just redeclare it in the block containing his main program and
normal ALGOL-1ike scope rules will do the rest. An occasional conplete
reconpilation will consolidate the changes after they have been fully
tested. The technique of precompilation iS effective only on single-
pass compilers; it was successfully incorporated in the Elliott ALGOL
programmng system

(3) dump.

This is an instruction which can be called by the user program
during execution, and causes a complete binary dunp of its code and
wor kspace into a named user file. The dunp can be restored and restarted
at the instruction following the dunp by an instruction to the operating
system If all necessary data input and initialization is carried out
before the dunp, the time spent on this as well as recompilation tine
can be saved. This provides a sinple and effective way of achieving
the FORTRAN effect of block data, and was successfully incorporated in
the inplenentation of Eliott ALGOL.

The one renai ning use of independent conpilation is to link a high
| evel language with machine code. But even here independent conpilation
is the wong technique, involving all the inefficiency of procedure call
and all the conplexity of parameter access at just the point where it
hurts nost. A far better solution is to allow machine code instructions

to be inserted in-line within a high level |anguage program as was done
in Elliott ALGOL; or better, provide a macro facility for machine code
as in PL/360.

I ndependent compilation iS a solution to yesterday's probl ens; today
it has grown into a problemin its own right. The wise designer will
prefer to avoid rather than solve such problens.

3.4 Efficient Object Code

There is another argunent which is all too preval ent anong
enthusiastic |anguage designers, that efficiency of object code is no
| onger inportant; that the speed and-capacity of conputers is increasing
and their price is comng down, and the progranm ng |anguage desi gner
mght as well take advantage of this. This is an argunent that woul d be
quite acceptable if used to justify an efficiency loss of ten or twenty
percent, or even thirty and forty percent. But all too frequently it is
used to justify an efficiency loss of a factor of two, or ten, or even
nmore; and worse, the overhead is not only in time taken but in space
occupi ed by the running program In no other engineering discipline
woul d such avoi dabl e overhead be tolerated, and it should not be in
programm ng |anguage design, for the follow ng reasons

° The magni tude of the tasks we wish conputers to performis
growi ng faster than the cost-effectiveness of the hardware.

° However cheap and fast a computer is, it will be cheaper
and faster to use it nore efficiently

° In the future we nust hope that hardware designers will pay
increasing attention to reliability rather than to speed and cost.

° The speed, cost, and reliability of peripheral equipnment is
not inproving at the same rate as those of processors.

] If anyone is to be allowed to introduce inefficiency it
- shoul d be the user programmer, not the |anguage designer. The user

programmer can take advantage of this freedomto wite better structured
~and clearer progranms, and should not have to expend extra effort to
" obscure the structure and wite less clear prograns just to regain the
efficiency which has been so arrogantly preenpted by the |anguage
desi gner.

There is a widespread nyth that a | anguage designer can afford to
i gnore machine efficiency,' because it can be regained when required by
the use of a sophisticated optimzing conpiler. This is false: there is
nothing that the good engineer can afford to ignore. The only |anguage

10

whi ch has been optimzed with general success is FORTRAN, which was very
specifically designed for that very purpose. But even in FORTRAN,
optim zation has grave disadvantages:

° An optimzing conpiler is usually large, slow, unreliable, and |ate.

° Even with a reliable conpiler, there is no guarantee that an optim zed
program wi || have the same results as a normally conpiled one.

° A snal | change to an optim zed program may sw tch off optimzation
with an unpredictable and unacceptabl e | oss of efficiency.

° The nmost subtle danger is that optimzation tends to remove from
the programmer his fundamental control over and responsibility for
the quality of his prograns.

The solution to these problens is to produce a | anguage for which a
simple straightforward "non-pessimising" conpiler will produce straight-
forward object progranms of acceptable conpactness and efficiency -- simlar
to those produced by a resolutely non-clever (but also non-stupid) machine
code progranmer. Make sure that the |anguage is sufficiently expressive
that nost other optimizations can be made in the |anguage itself; and
finally, make the language so sinple, clear, regular, and free fromside
effects that a general nmachine-independent optimzer can sinply translate
an inefficient programinto a nmore efficient one with guaranteed identica
effects, and expressed in the sane source |anguage. The fact that the
user can inspect the results of optimzation in his own |anguage
mtigates nmany of the defects |isted above.

3.5 Readability

The objective of readability by human beings has sonetines been
denied in favor of readability by a machine; and sonetines even been
denied in favor of abbreviation of witing, achieved by a wealth of
default conventions and inplicit assunptions. It is of course possible
for a conpiler or service programto expand the abbreviations, fill in
the defaults, and make explicit the assunptions. But in practice, experience
shows that it is very unlikely that the output of a conputer will ever be
nmore readable than its input, except in such trivial but inportant aspects
as inproved indentation Since in principle prograns should be read by

11

others, or reread by their authors, before being subnitted to the computer,
it woul d be wise for the programm ng | anguage designer to concentrate on
the easier task of designing a readable |anguage to begin wth.

4. Comment Conventions

If the purpose of a programm ng |anguage is to assist in the
docunentation of programs, the design of a superb comment convention is
obvi ously our nost inportant concern. In low |evel programming, the
greater part of the space on each line is devoted to conment. A conment
is always termnated by an end of line, and starts either in a fixed
colum, or with a special synbol allocated for this purpose.

_ LDAX [THS IS A COWENT
The introduction of free format into high level |anguages prevents the
use of the fornmer method; but it is surprising that few | anguages have
adopted the latter.

ALGOL 60 has two conment conventions. One is to enclose the text of
a comment between the basic word comment and a senicolon.

comment this is a conment;
This has several disadvantages over the l|owlevel comrent convention.

(1) The basic word comment is too long. It occupies space which
woul d be better occupied by the text of the comment, and is particularly
di scouraging to short comments.

(2) The comment can appear only after a begin or a semcolon,
al though it woul d sonetines be nore rel evant el sewhere.

(3) If the semicolon at the end is accidentally onitted, the compiler
“will without warning ignore the next follow ng statenent.

(k) One cannot put programtext within a coment, since a comment
nust not contain a semcolon.

The second coment convention of ALGOL 60 permits a conment between
an end and the next follow ng senicolon, end or else. This has proved
most unfortunate, since om ssion of a semcolon has frequently led to
ignoring the next follow ng statement:

. end this is a mstake A[i] :=x;

12

The FORTRAN comment convention defines as comment the whole of a

line containing a Cin the first colum.

o THS IS A COMMENT
I'ts main disadvantages are that it does not permt coments on the sane
line as the code to which they refer, and that it discourages the use of
short comrents. An unfortunate consequence is that a well annotated
FORTRAN program occupi es many pages, even though the greater part of each
page is blank. This in itself makes the program unnecessarily difficult
to read and understand.

The coment convention of COBOL suffers fromthe sane di sadvantages
of FORTRAN, since it insists that commentary should be a separate
par agr aph.

Mre recently designed | anguages have introduced special bracketing
synbols (e.g. /% and */) to encl ose comments, which can therefore be
pl aced anywhere in the program text where they are relevant:

/¥ THS IS A COWENT */
But there still remains the awkward probl em of omitting or m spunching
one of the comment brackets. In sone |anguages, this will cause omission
of statenents between two comments; in others it may cause the whol e of
the rest of the programto be ignored. Neither of these disasters are
likely to occur in lowlevel programs, where the end of |ine termnates
a coment .

5. Syntax
Another aspect of programming language design which is often considered
trivial or arbitrary is its syntax. But this is also a mistake; the
desi gner shoul d sel ect and observe the best possible syntactic framework
for his language, for two inportant practical reasons

(1) In a nodern fast compiler, a significant tine can be taken in
assenbly of characters into meaningful synbols, -- identifiers, nunbers
and basic words, and in checking the context-free structure of the program

(2) Wen a program contains a syntactic error, it is inportant that
the conpiler should be able to pinpoint the error accurately, to diagnose

13

its cause, recover fromit, and continue checking the rest of the program
Recal | the first Anerican space probe to Venus, reportedly |ost because

FORTRAN cannot recognize a nmissing comma in a DO statement. |n FORTRAN
the statenent
DO 17 | = 110

| ooks to the conpiler like an assignment to a (probably undecl ared)
variabl e DOITI:
DO17I = 110 .

In lowlevel progranming, the use of fixed field format neatly
solves both problems. The position and |ength of each neaningful synbo
is known, and it can be copied and conpared as a whol e without even
examning the individual characters; and if one field contains an error
it can be immediately pinpointed, and checking can be resumed at the very
next field.

Fortunately free format techniques have been di scovered which sol ve
the problens nearly as neatly as fixed format. The use of a finite
state machine to define the assenbly of characters into symbols, and one
of the nore restrictive forms of context-free granmmars (e.g. precedence
or topdown or both) to define the structure of a program -- these nust be
recormended to every language designer. It is certainly possible for a
machine to analyze more conplex grammars, but there is every indication
that the human programrer will find greater difficulty, particularly if
an error is present or even only suspected. If a conpiler cannot diagnose
the syntax of an individual statenment until it reaches the end of the
program what hope has a poor hunman?

As an exanpl e of what happens when a | anguage departs fromthe best
known technol ogy, that of context-free syntax, consider the case of the
labelled END. This is a convention whereby any identifier between an END
and its semcolon autonatically signals the end of the procedure with that
nane, and of any enclosed program structure, even if it has no mND of its
own. At first sight this is a harnless notational convenience, which Peter
Landin might call "syntactic sugar"; but in practice the consequences are
disastrous. If the programer accidentally omts an END anywhere in his
program it will automatically and w thout warning be inserted just before
the next follow ng labelled END, Wwhich is very unlikely to be where it was
wanted. Tandin's phrase for this would be "syntactic rat poison". Wse

14

programmers have therefore |earned to avoid the labelled END, which is a
great pity, since if the labelled END was used merely to check the
correctness of the nesting of statenents it would have been very useful
and permtted earlier and cleaner error recovery, as well as remnaining
within the disciplines of context free |anguages. Here is a classic
exanpl e of a |anguage feature which conbines danger to the programer
with difficulty for the inplenentor. It is all too easy to reconcile
criteria of demerit.

6. Arithmetic Expressions

A major feature of FORTRAN, which gives it the name FORmula TRANslator,
is the introduction of the arithmetic expression. AIGOL 60 extends this
idea by the introduction of a conditional expression. Wy is this such an
advance over assermbly code? The traditional answer is that it appeals to
the programrer% fam liarity with mathematical notation. But this only
leads to the more fundamental question, why is the notation of arithnetic
expressions of such benefit to the nathematician? The reason seenms to be
quite subtle and fundamental. It enbodies the principles of structuring,
which underlie all our attenpts to master a complex problem or control a
conpl ex situation by analyzing it into sinpler subproblens, with clean
and narrow interfaces between them

Consi der an arithmetic expression of the form

E+F
where E and F may thensel ves be sinple or conplex arithnetic expressions.
(1) The meaning of this whole expression can be understood wholly in
terms of an understanding of the neanings of E and F; (2) the purpose
of each part consists solely inits contribution to the purpose of the
whol e; (3) the neaning of the two parts can be understood whol |y
i ndependent |y of each other; () if E or Fisitself an arithmetic
expression, the same structuring principle can be applied to the analysis
of the parts as is applied to the understanding of the whole; (5) the
interface between the parts is clear, narrow, and well controlled -- in
this case just a single nunber. And finally, (6) the separation of the
parts and their relation to the whole is clearly apparent fromtheir

witten form
15

These seemto be six fundamental principles of structuring, --
transparency of neaning and purpose, independence of parts, recursive
application, narrow interfaces, and manifestness of structure. |In the
case of arithnetic expressions these six principles are reconciled and
achieved together with very high efficiency of inplenentation. Byt the
applicability of the arithmetic expression is seriously limted by the
extreme narrowness of the interface. COften the programmer wishes to dea
with nuch larger data structures, for exanple, vectors or matrices or
lists; and | anguages such as APL and LISP have permtted the use of
expressions with these structures as operands and results. This seens to
be an excellent direction of advance in progranmng |anguage design,
particularly for special purpose |anguages. But the advance is not
pur chased w thout sone penalty in efficiency and programrer control. The
very reason why arithnetic expressions can be evaluated with such efficiency
is that the operands and results of each subexpression are sufficiently
small to be held in a high-speed register, or stored and recovered from
a mainstore location in a single instruction. Wen the operands are too
| arge, and especially when they may be partially or wholly stored on backing
store, it becomes nuch nore efficient to use updating operations, since
then the space occupied by one of the operands can be used to hold the
result. It would therefore seem advisable to introduce special notations
into a language to denote such operations as adding one matrix to another
appending one list to another, or making a new entry in a file, for exanple:

A. +B instead of A :=A+B if A and B are matrices
Ll.append(L2) if L1 and 12 are lists .

Anot her efficiency problemwhich arises fromthe attenpt of a |anguage
to provide large data structures and built-in operations on themis that
“the inplementation nust select a particular machine representation for the
data, and use it uniformy, even in cases where other representations m ght
be considerably nore efficient. For exanple, the APL representation is
fine for small matrices, but is very inappropriate or even inpossible for
large and sparse ones. The LISP representation of lists is very efficient
for data held wholly in main store, but becomes inefficient when the lists
are so long that they nust be held on backing store, particularly discs
and tapes. Oten the efficiency of a representation depends on the relative

16

frequency of various forns of operation, and therefore should be different
in different prograns, or even be changed from one phase of a programto
anot her.

A solution to this problemis to design a general purpose |anguage
whi ch provides the programmer with the tools to design and inplenent his
own representation for data and code the operations upon it. This is the
main justification for the design of "extensible" |anguages, which so many
designers have ainmed at, with rather great lack of success. In order to
succeed, it will be necessary to recognize the follow ng

(1) The need for an exceptionally efficient base |anguage in order
to define the extensions.

(2) The avoidance of any form of syntactic extension to the |anguage.
Al that is needed is to extend the meaning of the existing operators of
the |anguage, an idea which was called "overloading" by MCarthy.

(3) The conpl ete avoi dance of any form of automatic type transfer,
coercion, or default convention, other than those inplenmented as an
extension by the programer hinself.

| fear that nmost designers of extensible | anguages have spurned the
technical sinplifications which nmake them feasible.

7. Program Structures

However far the use of expressions and functional notations nmay be
extended, a progranmer will eventually require the capability of updating
his environnent. Sonetines this will be because he wants to performinput
and output, sonetimes because it is nore efficient to store the results of
a computation so that the stored value can be used rather than reconputed
at a later tine, and sonetimes because it is a natural way of representing
his problem -- for exanple, in the case of discrete event sinulation or
the nonitoring and control of some real world process.

Thus it is necessary to depart fromthe welcome sinplicity of the
mat hematical expression; but to attenpt to preserve as far as possible the
structuring principles which it embodies. Fortunately, ALGOL €0 (in its
compound, conditional, for, and procedure statements) has shown the way in

17

which this can be done. The advantages of the use of these program
structures is becomng apparent even to progranmers using |anguages
which do not provide the notations to express them

The introduction of programstructures into a |anguage not only
hel ps the programrer, but does not injure the efficiency of an inplenenta-
tion. Indeed, the avoidance of wild jumping will be of positive benefit
on machines with slave stores or paging hardware; and if a conpiler makes
any attenpt at optimzation, the clear indication of the control structure
of a program can only sinplify this task.

There is one case where ALGOL 60 does not provide an appropriate
structure, and that is when a selection nust be nade frommore than two
alternatives in accordance with some integer value. |n this case, the
progranmer nust declare a switch, specifying a list of labels, and then
junp to the i=th label in this list.

switch SS = 11, 12, L3;

go to SYi];

Ll: Ql; go to L;

12: Q2; go to L;

L3: Q5;

L
Unfortunately introduction of the switch as a nameable entity is not only
an extra conplexity in the |anguage and inplementation, but gives plenty
of scope for tricky programmng and even trickier errors, particulsriy
when junping to sone conmon continuation point on conpletion of the
alternative action.

The first language designers to deal with the problemof the swtch
proposed to generalize it by providing the concept of the label array
into which the programmer could store |abel values. This has sone peculiarly
unpl easant consequences in addition to the disadvantages of the swtch
Firstly, it obscures the program so that its control structure is not
apparent fromthe form of the program but can only be determned by a
run-tine trace. And secondly, the programmer is given the power to junp
back into the mddle of a block he has already exited, with unpredictable
consequences unless a run-tinme check is inserted. In ALGOL 60 the scope
rules make this error detectable at conpile tine.

18

The way to avoid all these problems is a very sinple extension to
the AIGOL 60 conditional notation, a construction which I have called the

case construction. In this notation, the example of the sw tch shown above
woul d take the form
case i of
@,
Qp»
Q13
This was ny first programm ng |anguage invention, of which | amstill nost

proud, since it appears to bear no trace of conpensating di sadvantage.

8. Variables

One of the nost power ful and nost dangerous aspects of machine code
programmng is that each individual instruction of the code can change the
content of any register, any location of store, and alter the condition of
any peripheral: it can even change its neighboring instructions or itself.
Wrse still, the identity of the location changed is not always apparent
from the witten formof the instruction; it cannot be determned unti
run time, when the values of base registers, index registers, and indirect
addresses are known. This does not matter if the programis correct, but
if there is the slightest error, even only in a single bit, there is no
limt to the damage which may be done, and no limt to the difficulty of
tracing the cause of the damage. In summary, the interface between
every two consecutive instructions in a machine code program consists of
the state of the entire machine -- registers, mainstore, backing stores
and all peripheral equipnent.

In a high level language, the programmer is deprived of the dangerous
power to update his own programwhile it is running. Even nore val uable,
he has the power to split his machine into a nunber of separate variables,
arrays, files, etc.; and when he w shes to update any of these, he nust
quote its name explicitly on the left of the assignment so that the identity
of the part of the machine subject to change is imediately apparent; and
finally, a high level |anguage can guarantee that all variables are disjoint,
and that updating any one of them cannot possibly have any effect on any
ot her

19

Unfortunately, many of these advantages are not naintained in the
design of procedures and parameters in ALGOL60 and other |anguages.
But instead of mending these mnor faults, many |anguage designers have
preferred to extend them throughout the whole | anguage by introducing
the concept of reference, pointer, or indirect address into the |anguage
as an assignable item of data. This imediately gives rise in a high
| evel language to one of the nost notorious confusions of machine code,
nanely that between an address and its contents. Sone |anguages attenpt
to solve this by even nore confusing automatic coercion rules. Wrse
still, an indirect assignnent through a pointer, just as in machine code
can update any store |ocation whatsoever, and the damage is no |onger
confined to the variable explicitly named as the target of assignment.
For exanple, in ALGOL 68, the assignment

x &y
al ways changes x , but the assignnent
X:=y+1;

if x is a reference variable may change any other variable (of appropriate
type) in the whole nachine. One variable it can never change is x !
Unlike all other values (integers, strings, arrays, files, etc.) references
have no meaning independent of a particular run of a program They cannot
be input as data, and they cannot be output as results. [If either data
or references to data have to be stored on files or backing stores, the
problems are immense. And on many machines they have a surprising
overhead on performance, for exanple they will clog up instruction
pi pe-lines, data |ookahead, slave stores, and even paging systens.
References are like junps, leading wildly fromone part of a data
structure to another. Their introduction into high Ievel |anguages has
been a step backward from which we may never recover.

9. Bl ock Structure

In addition to the advantages of disjoint named variables, high |eve
| anguages provide the programrer with a powerful tool for achieving even
greater security, namely the scope and locality associated with block
structure. In FORTRAN or ALGOL 60, if the programmer needs a variable for

20

the purposes of a particular part of his program he can declare it locally
to that part of the program This enables the programmer to nake nmanifest
in the structure of his programthe close association between the variable
and the code which uses it; and he can be absolutely confident that no
other part of the program whether witten by hinself or another, can

ever interfere with, or even look at, the variable wthout his witten
permssion, i.e., unless he passes it as a parameter to a particul ar

naned procedure. The use of locality also greatly reduces the width of

the interfaces between parts of the program the fact that programmers no

| onger need to tell each other the names of their working variables is only
one of the beneficial consequences.

Like all the best programm ng |anguage features, the locality and
scope rules of ALGOL 60 are not only of great assistance to the programmer
in the decomposition of his task and the inplenentation of its subtasks
they al so pernit econony in the use of machine resources, for exanple
main store. The fact that a group of variables is required for purposes
local only to part of a programmeans that their values will usually be
relevant only while that part of the programis being executed. It is
therefore possible to reallocate to other purposes the storage assigned
to these variables as soon as they are no |onger required. Since the
bl ocks of a programin ALGOL 60 are always conpleted in the exact reverse
of the order in which they were entered, the dynanmic reallocation of
storage can be acconplished by stack techniques, with small overhead of
time and space, or none at all in the case of blocks which are not procedure
bodi es, for which the admnistration can be done at conpile time. Finally,
the programmer is encouraged to declare at the same tine those variables
which will be used together, and these will be allocated in contiguous
| ocations, which will increase the efficiency of slave storage and pagi ng
t echni ques.

It is worthy of note that the econony of dynamic reallocation is
achieved without any risk that the programmer will accidentally refer to
a variable that has been reallocated, and this i s guaranteed by a
compile-time and not a run-tine check. Al these advantages are achieved
in ALGOL 60 by the close correspondence between the statically visible
scope of a variable in a source programand the dynamic lifetime of its

21

storage when the programis run. A |anguage designer should therefore
be extrenely reluctant to break this correspondence, which can easily
be done, for exanple, by the introduction of references which my point
to variables of an exited block. The rules of ALGOL 68, designed to
detect such so-called "dangling references" at conpile tine, are both
conplicated and ineffective, and pL/1 does not bother at all

10. Procedures and Paraneters

According to current theories of structured progranmng, every large
scal e progranm ng project involves the design, use, and inplementation of
a speci al - purpose programming |anguage, with its own data concepts and
primtive operations, specifically oriented to that particular project.
The procedure™and parameter are the major tool provided for this purpose
by high level |anguages since FORTRAN. In itself, this affords all the
maj or advantages clainmed for extensible |anguages. Furthernore, in its
inplementation as a closed subroutine, the procedure can achieve very
great econom es of storage at run tinme. For these reasons, the |anguage
desi gner shoul d give the greatest attention to this feature of his
| anguage. Procedure calls and paraneter passing shoul d produce very
conpact code. Lengthy preludes and postludes nust be avoided. The effect
of the procedure on its parameters should be clearly manifest fromits
syntactic form and should be sinple to understand and resistant to error.
And finally, since the procedure interface is so often the interface
between major parts of a program the correctness of its use should be
subjected to the nost rigorous campile tinme check.

The chief defects of the FORTRAN parameter nechanism are:

(1) It fails to give a notational distinction at the call side
between paranmeters that convey values into a procedure, that convey
values out of a procedure, and that do both. This negates many of the
advant ages whi ch the assignnent statement has over machine code
progr anmi ng

(2) The shibbol eth of independent conpilation prohibits conpile tine
checks on parameter passing, just where interface errors are nost |ikely
and nost disastrous and nost difficult to debug

22

(3) The ability to define side effects of function calls negates
many of the advantages of arithmetic expressions.

A-t |east FORTRAN permits efficient inplementation, unless a

m sgui ded but all too frequent attenpt is made to permt a mixture of
| anguages across the procedure interface. A subroutine that does not
know whether it is being called fromALGOL or from FORTRAN has a hard
life.

ALGOL 60 perpetuates all these disadvantages, but not the advantage.
The difficulty of conpile time paraneter checking is due to the absence
of parameter specifications. Even if an inplementation insists on ful
specification (and nmost do), the programrer has no way of specifying the
paraneters of a formal procedure parameter. This is one of the excuses
for the inefficiency of many ALGCL inplenentations. The one great advance
of AIGOL 60 is the value parameter, which is inmeasurably superior to
the dumy paraneter of FORTRAN and Pr/1. What a shane that the name
parameter is the default!
But perhaps the nost subtle defect of the ALGOL 60 parameter is
that the user is permtted to pass the sane variable twice as an actua
paranmeter corresponding to two distinct formal paraneters. This
i mredi ately violates the principle of disjointness, and can |lead to many
curious, unexpected effects. For exanple, if a procedure
matrix multiply (4,8,C)
is intended to have the effect
A .= BxC,
it would seem reasonable to square A by
matrix nultiply (4,A,4) .
~This error is prohibited in standard FORTRAN, but few programmers realize
it, and it is rarely enforced by conpile time or run time check. No
wonder the procedure interface is the one on which run time debugging
aids have to concentrate.

11. Types

Among the nost trivial but tiresome errors of |ow |evel progranmm ng
are type errors, for exanple, using a fixed point operation to add floating

25

poi nt nunbers, using an address as an integer or vice versa, or forgetting
the position of a field in a data structure. The effects of such errors,
al though fully explicable in terns of bit patterns and machine operations
are so totally unrelated to the concepts in ternms of which the progranmmer
is thinking that the detection and correction of such errors can be
exceptional ly tedious. The trouble is that the hardware of the conputer
is far too tolerant and forgiving. It is willing to accept al nost any
sequence of instructions and nmake sense of themat its own level. That is
the secret of the power, flexibility, and sinplicity, and even reliability
of camputer hardware, and should therefore be cherished.

But it is also one of the main reasons why we turn to high | eve
| anguages, which can elimnate the risk of such error by a conpile tine
check. The programmer declares the type of each variable, and the
conpi | er can work out the type of each result; it therefore always knows
what type of machine code instruction to generate. In cases where there
is no meaningful operation (for exanple, the addition of an integer and
a Bool ean), the conpiler can informthe programrer of his m stake, which
is far better than having to chase its curious consequences after the
program has run.

However, not all |anguage designers would agree. Sane |anguages, by
conplex rules of automatic type transfers and coercions, prefer the
dangerous tol erance of machine code, but with the follow ng added
di sadvant ages:

(1) The result will often be "nearly" right, so that the programrer
has | ess warning of his error.

(2) The inefficiency of the conversion is often a shock.

(3) The |anguage is much conplicated by the rules.

(4) The introduction of genuine |anguage extensibility is made
nmuch nore difficult.

Apart fromthe elimnation of risk of error, the concept of typeis
of vital assistance in the design and docunentati on phases of program
develomment. The design of abstract and concrete data structures is one
of the first tools for refining our understanding of problens, and for

2k

defining the common interfaces between the parts of a large program
The declaration of the nane and structure or range of values of each
variable is a nost inportant aspect of clear progranmmng, and the forna
description of the relationship of each variable to other program
variables is a nost inportant part of its annotation; and finally an
informal description of the purpose of each variable and its manner of use
is a nost inportant part of program docunentation. |n fact, | believe
a | anguage shoul d enable the programmer to declare the units in which
his nunbers are expressed, so that a conpiler can check that he is not
confusing radians and degrees, addi ng heights to weights or comparing
meters with yards.

Again not all l|anguage designers woul d agree. Many | anguages do
not require the programmer to declare his variables at all. |nstead
they define-conplex default rules which the conpiler nust apply to
undecl ared variables. But this can only encourage sloppy program
design and docunentation, and nullify many of the advantages of bl ock
structure and type checking; the default rules soon get so conplex that
they are very likely to give results not expected by the programer, and
as ludicrously or subtly inappropriate to his intentions as a machine
code program which contains a type error

O course, wise programmers have learned that it is worthwhile to
expend the effort to avoid these dangers. They eagerly scan the conpiler
listings to ensure that every variable has been declared, and that al
the characteristics assigned to it by default are acceptable. What a pity
that the designers of these |anguages take such trouble to give such
trouble to their users and thenselves.

12. Language Feature Design

Thi's paper has given many practical hints on how not to design a
programm ng |anguage. It has even suggested that nmany recent |anguages
have followed these hints. But there are very few positive hints on
what to put into your next |anguage design. Nearly everything | have
ever published is full of positive and practical suggestions for
progranming |anguage features, notations, and inplementation nethods

25

furthernore, for the last ten years, | have tried to pursue the same
obj ectives in | anguage design that | have expounded here; and I have
tried to make nmy proposals as convincing as | could. And. yel ihave
never designed a progranmng |anguage, -- only programming | anguage
features. It is nmy belief that these two design activities shoul d
be more clearly separated in the future.

(1) The designer of a new feature should concentrate on one feature
at atime. If necessary, he should design it in the context of sone
wel | known programmi ng | anguage which he likes. He shoul d nake sure
that his feature mtigates some disadvantage orrenmedi es some incomplete-
ness of the language, without conpromising any of its existing nmerits
He shoul d show how the feature can be sinply and efficiently inplenented.
He should wite a section of a user manual, explaining clearly with
exanmpl es how the feature is intended to be used. He should check
carefully that there are no traps lurking for the unwary user, which
cannot be checked at conpile tinme. He should wite a nunber of exanple
prograns, evaluating all the consequences of using the feature, in
conparison with its many alternatives. And finally if a sinple proof
rule can be given for the feature, this would be the final accolade

(2) The | anguage designer should be famliar with many alternative
features designed by others, and shoul d have excellent judgment in
choosing the best, and rejecting any that are nutually inconsistent.

He nust be capable of reconciling, by good engineering design, any
remaining mnor inconsistencies or overlaps between separately designed
features. He nust have a clear idea of the scope and purpose and range
of application of his new language, and how far it should go in size and
conplexity. He should have the resources to inplenent the |anguage on
one or nore machines, to wite user nmanuals, introductory texts
advanced texts; he should construct auxiliary programm ng aids and
library prograns and procedures; and finally, he should have the
political will and resources to sell and distribute the language to its
intended range of customers. One thing he should not do is to include
untried ideas of his own. H's task is consolidation, not innovation.

26

13. Conclusion

A final hint: listen carefully to what | anguage users say they
want, until you have an understanding of what they really want. Then
find sone way of achieving the Iatter at a small fraction of the cost
of the former. This is the test of success in |anguage design, and
of progress in programming methodology. Perhaps these two are the sane
subj ect anyway.

APPENDI X
Annotated Reading List

Report on the Al gorithm c Language ALGOL 60.
ed. P. Naur.

The more | ponder the principles of |anguage design, and the
techni ques which put them into practice, the nmore is ny amazenent and
admration of ALGOL 60. Here is a language so far ahead of its tine,
that it was not only an inprovenment on its predecessors, but al so on
nearly all its successors.

O particular interest are its introduction of all the main program
structuring concepts, the sinplicity and clarity of its description,
rarely equalled and never surpassed. Consider especially the avoi dance
of abbreviation in the syntax names and equations, and the inclusion of
exanpl es in every section.

Remai ning Troubl espots in ALGOL 60.
D. E. Knuth
Comm ACM 10, 10 (Cctober 1967).

Most of these troubl espots have been elininated in the wdely used
subsets of the language. Wen you can design a |anguage with so few
troubl espots, you can be proud. The real remaining troublespot is the
declining quality of inplenentations.

27

A Contribution to the Devel opment of AIGOL.
N. Wrth and C A R Hoare
Comm. ACM 9,6 (June 1966) .

This language is widely known as ALGOL W It renedies many of the
defects of ALGOL 60, and includes many of the good features of FORTRAN |V
and LISP. Its introduction of references avoids nmost of the defects
described in Section 9. It has been extrenely well inplenented on the
| BM 360, and has a small and scattered band of devoted foll owers.

PL/360.
N. Wrth
Journal of the ACM 15, 1 (January 1968).

This introduces the benefits of program structures to | ow | evel
programming for the IBM/360. It was hastily desigend and inplenented
as a tool for_inplementing ALGOL W it excited nore interest than
ALGOL W, and has been widely imtated on other machines.

The Programm ng Language PASCAL.
N. Wrth
Acta Informatica 1, 1(1971), 35-63 .

Desi gned to conbi ne the machi ne-independence of ALGOL Wwith the
efficiency and control of PL/?60. New featurss are the sinple but
powerful and efficient type definition capabilities, including sets
and a very clean treatnent of files. Wen used to wite its own
translator, it achieves a remarkable conbination of clarity of structure
and detail together with high efficiency in producing good object code.

Structured Progranm ng. (Acadenic Press, 1972)
OJ. Dahl, E. W Dijkstra, C A R Hoare.

Expounds a systematic approach to the design and development and
docunentation of conputer programs. The last section is an excellent
introduction to SIMULA 67 and the ideas which underlie it.

Recursive Functions of Symbolic Expressions and Their Conputation by
Machine. Part 1.

J. MCarthy

Comm. ACM 3, L (April 1960).

Describes a beautifully sinple and powerful fully functional language
for symbol nmanipulation. Introduces the scan-mark garbage collection

28

t echni que which makes such |anguages feasible. LISP has sone good
interactive inplenentations, widely used in artificial intelligence
projects. It has also been extended in many ways, some good and some
bad, sonme |ocal and sone short-lived

AsA Standard FORTRAN
Comm. ACM 7, 10 (Cct ober 1964).

This language had the right objectives. It introduces the array,
the arithmetic expression and the procedure. The paraneter mechanismis
very efficient, and potentially secure. It has some very efficient
i mpl ementations for numerical applications. Wen used outside this field
it is alittle nore helpful or machine-independent than assenbly code
and can be remarkably inefficient. Its input/output is cunbersome, prone
to error, and surprisingly inefficient. The standardizers have maintained
the horrors of early inplenentations (the equival ence algorithm second
| evel definition), and have resolutely set their face against the advance
of |anguage design technology, and have thereby saved it from many |ater
horrors.

ASA Standard COBQL.
Codasyl COBCL Journal of Devel opnent, 1968.
National Bureau of Standards Handbook 106

Describes a | anguage suitable for sinple applications in business
data processing. It contains good data structuring capability, but poor
facilities for abstraction. It ained at readability, but unfortunately
achieved only prolixity, it aimed to provide a conplete progranming tool
in a way few |anguages have since. It is poor for variable format
processing. The primacy of the character data itemmake it rather
inefficient on nodern machines; and the methods provided to regain
efficiency (e.g. SYNCHRONISED) often introduce machi ne-dependency and
i nsecurity.

29

