
I .7--- _ _.--_ - l

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
‘ MEMO AIM-224

‘STAN-CS-73-403 ’ . --_”‘,- _ .- _ ’

HINTS ON PROGRAMMING LANGUAGE DESIGN

BY

C. A. R. HOARE

-=
SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
. ARPA ORDER NO. 24~4

PROJECT CODE 3D30

DECEMBER 1973 --- __ .-_ .--

COMPUTER SCIENCE DEPARTMENT
/ SC hool of Humanities and Scrences

ANFORD UNIVERSITY
3

h. .

L COMPUTER SCIENCE DEPARTMENT REPORT NO. CS-403

c

c

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM 224

HINTS ON PROGRAMMING LANGUAGE DESIGN

. C. A. R. Hoarey

ABSTRACT:

OCTOBER 1973

This paper (Based on a keynote address presented at the SIGACT/SIGPLAN

Symposium on Principles of Programming Languages, Boston, October 1-3,

1973) presents the view that a programming language is a tool which should

assist the programmer in the most difficult aspects of his art, namely

program design, documentation, and debugging. It discusses the objective

criteria for evaluating a language design, and illustrates them by

application to language features of both high level languages and

machine code programming. It concludes with an annotated reading list,

recommended for all intending language designers.

c

c
y On leave of absence from the Queen's University of‘ Belfast.

The work on this paper was supported in part by the National Science
Foundation under grant number GJ 36473X and by ARPA Research Contract
DAHC lj-73-C-0435. The views expressed are those of the author.

b

I would like in this paper to present a philosophy of the design

and evaluation of programming languages which I have adopted and

developed over a number of years, namely that the primary purpose of

(c
a programming language is to help the programmer in the practice of his

art. I do not wish to deny that there are many other desirable properties

of a programming language, -- for example, machine independence, stability

of specification, use of familiar notations, a large and useful library,

I
existing popularity, or sponsorship by a rich and powerful organization.

These aspects are often dominant in the choice of a programming language

by its users, but I wish to argue that they ought not to be. I shall

therefore express myself strongly. I fear that each reader will find

some of my points wildly controversial; I expect he will find other--
points that are obvious and even boring; I hope that he will find a

few points which are new and worth pursuing.

My approach is first to isolate the most difficult aspects of the

tb .
programmer's task, and state in general terms how a programming language

design can assist in meeting these difficulties. I discuss a number of

goals which have been followed in the past by language designers, and

which I regard as comparatively irrelevant or even illusory. I then

b turn to particular aspects of familiar high level programming languages,

and explain why they are in some respects much better than machine code

programming, and in certain cases worse. Finally, I draw a distinction
e between language feature design and the design of complete languages.

The appendix contains an annotated reading list; I recommend it as a

general educational background for intending language designers of the

I future.

Introduction

The form of this paper owes much to the kind suggestions of

Don Knuth.

2. Principles

If a programming language is regarded as a tool to aid the programmer,

it should give him the greatest assistance in the most difficult aspects

of his art, namely program design, documentation, and debugging.

2

e

0 Program Design

I The first and very difficult aspect of design is deciding what the

c

program is to do, and formulating this as a clear, precise, and acceptable

specification. Often just as difficult is deciding how to do it, -- how

to divide a complex task into simpler subtasks, and to specify the purpose

of each part, and define clear, precise, and efficient interfaces between

them. A good programing language should give assistance in expressing

not only how the program is to run, but what it is intended to accomplish;

and it should enable this to be expressed at various levels, from the

overall strategy to the details of coding and data representation. It

should assist in establishing and enforcing the programming conventions

and disciplines which will ensure harmonious cooperation of the parts of

a large program when they are developed separately and finally assembled

together. --

m Programming Documentation
. The purpose of program documentation is to explain to a human reader

the way in which a program works, so that it can be successfully adapted

after it goes into service, either to meet the changing requirements of

its users, to improve it in the light of increased knowledge, or just to

remove latent errors and oversights. The view that documentation is

something that is added to a program after it has been commissioned seems

to be wrong in principle and counterproductive in practice. Instead,

documentation must be regarded as an integral part of the process ofe
design and coding. A good programming language will encourage and assist

the programmer to write clear self-documenting code, and even perhaps

_ to develop and display a pleasant style of writing. The readability of

e programs is immeasurably more important than their writeability.

0 Program Debugging

Program debugging can often be the most tiresome, expensive, and

unpredictable phase of program develoIxnent , particularly at the stage

of assembling subprograms written by many programmers over a long period.

The best way to reduce these problems is by successful initial design of

I

c

r

L

.

the program, and by careful documentation during the construction of

code. But even the best designed and documented programs will contain

errors and inadequacies which the computer itself can help to eliminate.

A good programming language will give maximum assistance in this. Firstly,

the notations should be designed to reduce as far as possible the scope

for coding error; or at least to guarantee that such errors can be

detected by a compiler, before the program even begins to run. Certain

programming errors cannot always be detected in this way,and must be cheaply

detectable at run time; in no case can they be allowed to give rise to

machine or'implementation dependent effects, which are inexplicable in

terms of the language itself. This is a criterion to which I give the

name "security". Of course, the compiler itself must be utterly reliable,

so that its user has complete confidence that any unexpected effect was

obtained by his own program. And the compiler must be compact and fast,

so that there is no appreciable delay or cost involved in correcting a

program in source code and resubmitting for another run; and the object

code too should be fast and efficient, so that extra instructions can be

inserted even in large and time-consuming programs in order to help

detect their errors or inefficiencies.

A necessary condition for the achievement of any of these objectives

is the utmost simplicity in the design of the language. Without simplicity,

even the language designer himself cannot evaluate the consequences of his

design decisions. Without simplicity, the compiler writer cannot achieve

even reliability, and certainly cannot construct compact, fast and

- efficient compilers. But the main beneficiary of simplicity is the user

of the language. In all spheres of human intellectual and practical

activity, from carpentry to golf, from sculpture to space travel, the

true craftsman is the one who thoroughly understands his tools. And this

applies to programmers too. A programmer who fully understands his

language can tackle more complex tasks, and complete them quicker and

more satisfactorily than if he did not. In fact, a programmer's need

for an understanding of his language is so great, that it is almost.

4

impossible to persuade him to change to a new one. No matter what the

deficiencies of his current language, he has learned to live with them;

he has learned how to mitigate their effects by discipline and documenta-

tion, and even to take advantage of them in ways which would be impossible

in a new and cleaner language which avoided the deficiency.

It therefore seems especially necessary in the design of a new

programming language, intended to attract progrmers away from their

current high level language, to pursue the goal of simplicity to an

extreme, so that a programmer can readily learn and remember all its

features, can select the best facility for each of his purposes, can

fully understand the effects and consequences of each decision, and can

then concentrate the major part of his intellectual effort to understanding

his problem and his programs rather than his tool.

A high standard of simplicity is set by the machine or assembly

code programming for a small computer. Such a machine has an extremely

uniform structure, for example, a main store consisting of 2m words

numbered consecutively from zero up, a few registers, and a simple

synchronous standard interface for communication and control of peripheral

equipent. There is a small range of instructions, each of which has a

uniform format; and the effect of each instruction is simple, affecting

at most one register and one location of store or one peripheral. Even

more important, this effect can be described and understood quite

independently of every other instruction in the repertoire. And finally,

the programmer has an immediate feedback on the compactness and efficiency

of his code. Enthusiasts for high level languages are often surprised at

the complexity of the problems which have been tackled with such simple

tools.

On larger modern computers, with complex instruction repertoires,

and even more complex operating systems, it is especially desirable that

a high level language design should aim at the simplicity and clear

modular description of the best hardware designs. But the only widely

used languages which approach this ideal are FORTRAN, LISP and ALGOL 60,

and a few languages developed from them. I fear that most more modern

programming languages are getting even more complicated; and it is

particularly irritating -when their proponents claim that future hardware

designs should be oriented towards the implementation of this complexity.

5

L

3. Discussion

The previous two sections have argued that the objective criteria

e

L

L

\

for good language design may be summarized in five catch phrases:

simplicity, security, fast translation, efficient object code, and. .
readability. However desirable these may seem, many language designers

have

some

have

3.1

adopted alternative principles which belittle the importance of

or all of these criteria , perhaps those which their own languages

failed to achieve.

Simplicity

Some language designers have replaced the objective of simplicity

by that of modularity, by which they mean that a programmer who cannot

understand the whole of his language can get by with a limited under-

standing of only part of it. For programs that work as the programmer

intended this may be feasible; but if his program does not work, and

accidentally invokes some feature of the language which he does not know,

he will get into serious trouble. If he is lute, the implementation

will detect his mistake, but he will not be able to understand the diagnostic

message. Otherwise, he is even more helpless. If to the complexity

of his language is added the complexity of its implementation, the

complexity of its operating environment, and even the complexity of

institutional standards for the use of the language, it is not surprising

that when faced with a complex programming task so many programmers are

overwhelmed.

Another replacement of simplicity as an objective has been

orthogonality of design. An example of orthogonality is the provision

of complex integers, on the argument that we need reals and integers and

complex reals, so why not complex integers? In the early days of hardware

design, some very ingenious but arbitrary features turned up in order

codes as a result of orthogonal combinations of the function bits of an

instruction, on the grounds that some clever programmer would find a use

for them, -- and some clever programmer always did. Hardware designers

have now learned more sense; but language designers are clever programmers

and have not.

k

c

c

L

b

The principles of modularity, or orthogonality, insofar as they

contribute to overall simplicity, are an excellent means to an end;

but as a substitute for simplicity they are very questionable. Since in

practice they have proved to be a technically more difficult achievement

than simplicity, it is foolish to adopt them as primary objectives.

3.2 Security

The objective of security has also been widely ignored; it is

believed instead that coding errors should be removed by the programmer

with the assistance of a so-called "checkout? compiler. But this

approach has several practical disadvantages. For example, the debugging

compiler and the standard compiler are often not equally reliable. Even

if they are, it is impossible to guarantee that they will give the same

results, especially on a subtly incorrect program; and when they do not,

there is nothing to help the programmer find the mistake. For a large

and complex program, the extra inefficiency of the debugging runs may be

serious; and even on small programs, the cost of loading a large debugging

system can be high. You should always pity the fate of the programmer

whose task is so difficult that his program will not fit into the computer

together with your sophisticated debugging package. Finally, it is

absurd to make elaborate security checks on debugging runs, when no

trust is put in the results, and then remove them in production runs,

when an erroneous result could be expensive or disastrous. What would

we think of a sailing enthusiast who wears his lifejacket when training

on dry land, but takes it off as soon as he goes to sea? Fortunately,

with a secure language the security is equally tight for production and

for debugging.

3.3 Fast Translation

In the early days of high level languages it was openly stated that

speed of compilation was of minor imprtance, because programs would be

compiled only once and then executed many times. After a while it was

realized that the reverse was often true, that a program would be compiled

frequently while it was being debugged; but instead of'constructing a fast

L

L

c

c

c

L

translator, language designers turned to independent compilation, which

permits a programmer to avoid recompiling parts of his program which he

has not changed since the last time. But this is a poor substitute for

fast compilation, and has many practical disadvantages. Often it

encourages or even forces a programmer to split a large program into

modules which are too small to express properly the structure of his

problem. It entails the use of wide interfaces and cumbersome and

expensive parameter lists at inappropriate places. And even worse, it

prevents the compiler from adequately checking the validity of these

interfaces. It requires additional file space to store bulky intermediate

code, in addition to source code which must, of course, never be thrown

away. It discourages the programmer from making changes to his data

structure or representation, since this would involve a heavy burden of

recompilation,. And finally the linkage editor is often cumbersome to

invoke and expensive to execute. And it is all so unnecessary, if the

compiler for a good language can work faster than the linkage editor

anyway.

If you want to make a fast compiler even faster still, I can suggest

three technniques which have all the benefits of independent compilation

and none of the disadvantages.

(1) Prescan.

The slowest part of a modern fast compiler is the lexical scan

which inputs individual characters, assembles them into words or numbers,

identifies basic symbols, removes spaces and separates the comments. If

the source text of the program can be stored in a compact form in which

this character handling does not have to be repeated, compilation time

may be halved, with the added advantage that the original source program

may still be listed (with suitably elegant indentation); and so the

amount of file storage is reduced by a factor considerably greater than

*-two. A similar technique was used by the PACT I assembler for the IBM 701.

(2) Precompile.

This is a directive which can be given to the compiler after submitting

any initial segment of a large program. It causes the compiler to make

a complete dump of its workspace including dictionary and object code, in

8

t

a specified user file. When the user wishes to add to his program and

run it, he directs the compiler to recover the dump and proceed. When

his additions are adequately tested, a further precompile instruction

can be given. If the programmer needs to modify a precompiled procedure,

he can just redeclare it in the block containing his main program, and

normal ALGOL-like scope rules will do the rest. An occasional complete

recompilation will consolidate the changes after they have been fully

tested. The technique of precompilation is effective only on single-

pass compilers; it was successfully incorporated in the Elliott ALGOL

programming system.

r,

(3) dump*

This is an instmction which can be called by the user program

during execution, and causes a complete binary dump of its code and

workspace into a named user file. The dump can be restored and restarted

at the instruction following the dump by an instruction to the operating

system. If all necessary data input and initialization is carried out

before the dump, the time spent on this as well as recompilation time

can be saved. This provides a simple and effective way of achieving

the FORTRAN effect of block data, and was successfully incorporated in

the implementation of Elliott ALGOL.

The one remaining use of independent compilation is to link a high

level language with machine code. But even here independent compilation
e is the wrong technique, involtig all the inefficiency of procedure call

and all the complexity of parameter access at just the point where it

hurts most. A far better solution is to allow machine code instructions

L

to be inserted in-line within a high level language program, as was done

in Elliott ALGOL; or better, provide a macro facility for machine code,

as in PL/360.

Independent compilation is a solution to y4esterdayts problems; today

it has grown into a problem in its own right. The wise designer will

prefer to avoid rather than solve such problems.

9

3.4 Efficient Object Code

c

L

a
Ic

There is another argument which is all too prevalent among

enthusiastic language designers, that efficiency of object code is no

longer important; that the speed and-capacity of computers is increasing

and their price is coming down, and the programming language designer

might as well take advantage of this. This is an argument that would be

quite acceptable if used to justify an efficiency loss of ten or twenty

percent, or even thirty and forty percent. But all too frequently it is

used to justify an efficiency loss of a factor of two, or ten, or even

more; and worse, the overhead is not only in time taken but in space

occupied by the running program. In no other engineering discipline

would such avoidable overhead be tolerated, and it should not be in

programming language design, for the following reasons:

0 The magnitude of the tasks we wish computers to perform is

growing faster .than the cost-effectiveness of the hardware.

e However cheap and fast a cmputer is, it will be cheaper

and faster to use it more efficiently.

0 In the future we must hope that hardware designers will pay

increasing attention to reliability rather than to speed and cost.

e
0 The speed, cost, and reliability of peripheral equipment is

not improving at the same rate as those of processors.

a If anyone is to be allowed to introduce inefficiency ite

t

L

* should be the user programmer, not the language designer. The user

programmer can take advantage of this freedom to write better structured

_ and clearer programs, and should not have to expend extra effort to

e obscure the structure and write less clear programs just to regain the

efficiency which has been so arrogantly preempted by the language

designer.

There is a widespread myth that a language designer can afford to

ignore machine efficiency,' because it can be regained when required by

the use of a sophisticated optimizing compiler. This is false: there is

nothing that the good engineer can afford to ignore. The only language

10

c

\

‘cc

‘k

L
c

c

which has been optimized with general success is FORTRAN, which was very

specifically designed for that very purpose. But even in FORTRAN,

optimization has grave disadvantages:

0 An optimizing compiler is usually large, slow, unreliable, and late.

0 Even with a reliable compiler, there is no guarantee that an optimized

program will have the same results as a normally compiled one.

e A small change to an optimized program may switch off optimization

with an unpredictable and unacceptable loss of efficiency.

0 The most subtle danger is that optimization tends to remove from

the programmer his fundamental control over and responsibility for

the quality of his programs.

The solution to these problems is to produce a language for which a

simple straightforward "non-pessimising" compiler will produce straight-

forward object programs of acceptable compactness and efficiency -- similar

to those produced by a resolutely non-clever (but also non-stupid) machine

code programmer. Make sure that the language is sufficiently expressive

that most other optimizations can be made in the language itself; and

finally, make the language so simple, clear, regular, and free from side

effects that a general machine-independent optimizer can simply translate

an inefficient program into a more efficient one with guaranteed identical

effects, and expressed in the same source language. The fact that the

user can inspect the results of optimization in his own language

mitigates many of the defects listed above.

3.5 Readability

The objective of readability by human beings has sometimes been

denied in favor of readability by a machine; and sometimes even been

denied in favor of abbreviation of writing, achieved by a wealth of

default conventions and implicit assumptions. It is of course possible

for a compiler or service program to expand the abbreviations, fill in

the defaults, and make explicit the assumptions. But in practice, experience

shows that it is very unlikely that the output of a computer will ever be

more readable than its input, except in such trivial but important aspects

as improved indentation Since in principle programs should be read by

11

s

i

others, or reread by their authors, before being submitted to the ccmputer,

it would be wise for the programming language designer to concentrate on

the easier task of designing a readable language to begin with.

. .

4. Comment Conventions

If the purpose of a programming language is to assist in the

documentation of programs, the design of a superb comment convention is

obviously our most important concern. In low level programming, the

greater part of the space on each line is devoted to comment. A comment

is always terminated by an end of line, and starts either in a fixed

column, or with a special symbol allocated for this purpose.

LDAX [THIS IS A COMMENT-=.
The introduction of free format into high level languages prevents the

use of the former method; but it is surprising that few languages have

adopted the latter.

ALGOL 60 has two comment conventions. One is to enclose the text of

a comment between the basic word comment and a semicolon.

This has several disadvantages over the low-level comment convention.

(1) The basic word comment is too long. It occupies space which

would be better occupied by the text of the comment, and is particularly

comment this is a comment;

discouraging to short comments.

(2) The comment can appear only after a begin or a semicolon,

although it would sometimes be more relevant elsewhere.

(3) If the semicolon at the end is accidentally omitted, the compiler

* will without warning ignore the next following statement.

(4) One cannot put program text within a comment, since a comment

must not contain a semicolon.

The second comment convention of ALGOL 60 permits a comment between

an end and the next following semicolon, end or else. This has proved

most unfortunate, since omission of a semicolon has frequently led to

ignoring the next following statement:

. . . end this is a mistake A[i] :=x;

12

The FC>RTRAN comment convention defines as comment the whole of a

line containing a C in the first column.

c THIS IS A COMMENT

Its main disadvantages are that it does not permit comments on the same. .
line as the code to which they refer, and that it discourages the use of

short comments. An unfortunate consequence is that a well annotated

FORTRAN program occupies many pages, even though the greater part of each

page is blank. This in itself makes the program unnecessarily difficult

c,
to read and understand.

The comment convention of COBOL suffers from the same disadvantages

of FORTRAN, since it insists that commentary should be a separate

paragraph.

Q
More recently designed languages have introduced special bracketing

symbols (e.g. ';/* and */) to enclose comments, which can therefore be

placed anywhere in the program text where they are relevant:

/* THIS IS A COMMENT */ .

Q
But there still remains the awkward problem of amitting or mispunching

one of the comment brackets. In some languages, this will cause amission

of statements between two comments; in others it may cause the whole of

the rest of the program to be ignored. Neither of these disasters are

likely to occur in low-level programs, where the end of line terminates

a comment.

designer should select and observe the best possible syntactic framework

I for his language, for two important practical reasons:

(1) In a modern fast compiler, a significant time can be taken in

assembly of characters into meaningful symbols, -- identifiers, numbers

and basic words, and in checking the context-free structure of the program.

(2) When a program contains a syntactic error, it is important that

the compiler should be able to pinpoint the error accurately, to diagnose

13

its cause, recover from it, and continue checking the rest of the program.

Recall the first American space probe to Venus, reportedly lost because

FORTRAN cannot recognize a missing comma in a DO statement. In FORTRAN

the statement

DO 17 I = 110 . .

looks to the compiler like an assignment to a (probably undeclared)

variable DOlTI:

~0171 = ii0 .

In low-level programming, the use of fixed field format neatly

solves both problems. The position and length of each meaningful symbol

is known, and it can be copied and compared as a whole without even

examining the individual characters; and if one field contains an error

it can be immediately pinpointed, and checking can be resumed at the very

next field. --,

Fortunately free format techniques have been discovered which solve

the problems nearly as neatly as fixed format. The use of a finite

state machine to define the assembly of characters into symbols, and one

of the more restrictive forms of context-free grammars (e.g. precedence

or topdown or both) to define the structure of a program, -- these must be

recommended to every language designer. It is certainly possible for a

machine to analyze more complex grammars, but there is every indication

that the human programmer will find greater difficulty, particularly if

an error is present or even only suspected. If a compiler cannot diagnose

the syntax of an individual statement until it reaches the end of the

program, what hope has a poor human?

As an example of what happens when a language departs from the best

known technology, that of context-free syntax, consider the case of the

labelled END. This is a convention whereby any identifier between an END

and its semicolon automatically signals the end of the procedure with that

name, and of any enclosed program structure, even if it has no END of its

own. At first sight this is a harmless notational convenience, which Peter

Landin might call "syntactic sugar"; but in practice the consequences are

disastrous. If the programmer accidentally omits an END anywhere in his

program, it will automatically and without warning be inserted just before

the next following labelled END, which is very unlikely to be where it was

wanted. Landin's phrase for this would be "syntactic rat poison". Wise

14

e

progranvners have therefore learned to avoid the labelled END, which is a

great pity, since if the labelled END was used merely to check the

correctness of the nesting of statements it would have been very useful,

and permitted earlier and cleaner error recovery, as well as remaining

within the disciplines of context free languages. Here is a classic

example of a language feature which combines danger to the programmer

with difficulty for the implementor. It is all too easy to reconcile

criteria of demerit.

6. Arithmetic ExDressions

A major feature of FORTRAN, which gives it the name FORmula TRAJYslator,

is the introduction of the arithmetic expression. ALGOL 60 extends this

idea by the introduction of a conditional expression. Why is this such an

advance over assembly code? The traditional answer is that it appeals to

the programmer% familiarity with mathematical notation. But this only

leads to the more fundamental question, why is the notation of arithmetic

expressions of such benefit to the mathematician? The reason seems to be.

quite subtle and fundamental. It embodies the principles of structuring,

which underlie all our attempts to master a complex problem or control a

complex situation by analyzing it into simpler subproblems, with clean

and narrow interfaces between them.

Consider an arithmetic expression of the form

E+F ,

where E and F may themselves be simple or complex arithmetic expressions.

(1) The meaning of this whole expression can be understood wholly in

terms of an understanding of the meanings of E and F ; (2) the purpose

of each part consists solely in its contribution to the purpose of the

whole; (3) the meaning of the two parts can be understood wholly

independently of each other; (4) if E or F is itself an arithmetic

expression, the same structuring principle can be applied to the analysis

of the parts as is applied to the understanding of the whole; (5) -the

interface between the parts is clear, narrow, and well controlled -- in

this case just a single number. And finally, (6) the separation of the

parts and their relation to the whole is clearly apparent from their

written form.

15

c

c

These seem to be six fundamental principles of structuring, --

transparency of meaning and purpose, independence of parts, recursive

application, narrow interfaces, and manifestness of structure. In the

case of arithmetic expressions these six principles are reconciled and

achieved together with very high efficiency of implementation. But the

applicability of the arithmetic expression is seriously limited by the

extreme narrowness of the interface. Often the programmer wishes to deal

with much larger data structures, for example, vectors or matrices or

lists; and languages such as APL and LISP have permitted the use of

expressions with these structures as operands and results. This seems to

be an excellent direction of advance in programming language design,

particularly for special purpose languages. But the advance is not

L

purchased without some penalty in efficiency and programmer control. The

very reason why arithmetic expressions can be evaluated with such efficiency

is that the operands and results of each subexpression are sufficiently

small to be held in a high-speed register, or stored and recovered from

a mainstore location in a single instruction. When the operands are too

large, and especially when they may be partially or wholly stored on backing

store, it becomes much more efficient to use updating operations, since

then the space occupied by one of the operands can be used to hold the

result. It would therefore seem advisable to introduce special notations

into a language to denote such operations as adding one matrix to another,

appending one list to another, or making a new entry in a file, for example:

A.+B instead of A :=A+B if A and B are matrices

Ll.append(L2) if Ll and L2 are lists .

Another efficiency problem which arises from the attempt of a language

to provide large data structures and built-in operations on them is that

- the implementation must select a particular machine representation for the

data, and use it uniformly, even in cases where other representations might

be considerably more efficient. For example, the APL representation is

fine for small matrices, but is very inappropriate or even impossible for

large and sparse ones. The LISP representation of lists is very efficient

for data held wholly in main store, but becomes inefficient when the lists

are so long that they must be held on backing store, particularly discs

and tapes. Often the efficiency of a representation depends on the relative

16

c

c

L

i

c

frequency of various forms of operation, and therefore should be different

in different programs, or even be changed from one phase of a program to

another.

A solution to this problem is to design a general purpose language

which provides the prograsfllner with the tools to design and implement his

own representation for data and code the operations upon it. This is the

main justification for the design of "extensible" languages, which so many

designers have aimed at, with rather great lack of success. In order to

succeed, it will be necessary to recognize the following:

(1) The need for an exceptionally efficient base language in order

to define the extensions.

(2) The avoidance of any form of syntactic extension to the language.

All that is needed is to extend the meaning of the existing operators of

the language, an idea which was called "overloading" by McCarthy.

(3) The complete avoidance of any form of automatic type transfer,

coercion, or default convention, other than those implemented as an

extension by the programmer himself.

I fear that most designers of extensible languages have spurned the

technical simplifications which make them feasible.

7* Program Structures

However far the use of expressions and functional notations may be

extended, a programmer will eventually require the capability of updating

his environment. Sometimes this will be because he wants to perform input

. and output, sometimes because it is more efficient to store the results of

a camputation so that the stored value can be used rather than recomputed

at a later time, and sometimes because it is a natural way of representing

his problem -- for example, in the case of discrete event simulation or

the monitoring and control of some real world process.

Thus it is necessary to depart from the welcome simplicity of the

mathematical expression; but to attempt to preserve as far as possible the

structuring principles which it embodies. Fortunately, ALGOL 6C (in its

compound, conditional, for, and procedure statements) has shown the way in

17

c

i

which this can be done. The advantages of the use of these program

structures is becoming apparent even to programmers using languages

which do not provide the notations to express them.

The introduction of program structures into a language not only

helps the programmer, but does not injure the efficiency of an implementa-

tion. Indeed, the avoidance of wild jumping will be of positive benefit

on machines with slave stores or paging hardware; and if a compiler makes

any attempt at optimization, the clear indication of the control structure

of a program can only simplify this task.

There is one case where ALGOL 60 does not provide an appropriate

structure, and that is when a selection must be made from more than two

alternatives in accordance with some integer value. In this case, the

L

programmer must declare a switch, specifying a list of labels, and then

jump to the i-cth label in this list.

switch SS = Ll, L2, L3;

c

c

c

L

I

. . .

go to SS[i];- -
Ll: Q,; go to L;- -
L2: Q,; go to L;-m
L3: Q3;

I .

Unfortunately introduction of the switch as a nameable entity is not only

an extra complexity in the language and implementation, but gives plenty

of scope for tricky programming and even trickier errors, partic;ilsrl~

when jumping to some common continuation point on completion zf the

alternative action.

The first language designers to deal with the problem of the switch

proposed to generalize it by providing the concept of the label array,

into which the programmer could store label values. This has some peculiarly

unpleasant consequences in addition to the disadvantages of the switch.

Firstly, it obscures the program, so that its control structure is not

apparent from the form of the program, but can only be determined by a

run-time trace. And secondly, the programmer is given the power to jump

back into the middle of a block he has already exited, with unpredictable

consequences unless a run-time check is inserted. In ALGOL 60 the scope

rules make this error detectable at compile time.

18

i

cc

The way to avoid all these problems is a very simple extension to

the ALGOL CO conditional notation, a construction which I have called the

case construction. In this notation, the example of the switch shown above

would take the form:

case i of . .
- -

This was my first programming language invention, of which I am still most

proud, since it appears to bear no trace of compensating disadvantage.

8. Variables
-=.

One of the most powerful and most dangerous aspects of machine code

programming is that each individual instruction of the code can change the

content of any register, any location of store, and alter the condition of

any peripheral: it can even change its neighboring instructions or itself.

Worse still, the identity of the location changed is not always apparent

from the written form of the instruction; it cannot be determined until

run time, when the values of base registers, index registers, and indirect

addresses are known. This does not matter if the program is correct, but

if there is the slightest error, even only in a single bit, there is no

limit to the damage which may be done, and no limit to the difficulty of

tracing the cause of the damage. In summary, the interface between

every two consecutive instructions in a machine code program consists of

the state of the entire machine -- registers, mainstore, backing stores

and all peripheral equipment.

In a high level language, the prograrmner is deprived of the dangerous

power to update his own program while it is running. Even more valuable,

he has the power to split his machine into a number of separate variables,

arrays, files, etc.; and when he wishes to update any of these, he must

quote its name explicitly on the left of the assignment so that the identity

of the part of the machine subject to change is immediately apparent; and

finally, a high level language can guarantee that all variables are disjoint,

and that updating any one of them cannot possibly have any effect on any

other.

19

c

Unfortunately, many of these advantages are not maintained in the

design of procedures and parameters in &EOL 60 and other languages.

But instead of mending these minor faults, many language designers have

preferred to extend them throughout the whole language by introducing

the concept of reference, pointer, or indirect address into the language

as an assignable item of data. This immediately gives rise in a high

level hnguage to one of the most notorious confusions of machine code,

namely that between an address and its contents. Some languages attempt

to solve this by even more confusing automatic coercion rules. Worse

still, an indirect assignment through a pointer, just as in machine code,

can update any store location whatsoever,

confined to the variable explicitly named

For example, in ALGOL 68, the assignment
a-x Y;. -.

always changes x , but the assignment

x:=y+l;

and the damage is no longer

as the target of assignment.

if x is a reference variable may change any other variable (of appropriate

type) in the whole machine. One variable it can never change is x !

Unlike all other values (integers, strings, arrays, files, etc.) references

have no meaning independent of a particular run of a program. They cannot

be input as data, and they cannot be output as results. If either data

or references to data have to be stored on files or backing stores, the

problems are immense. And on many machines they have a surprising

overhead on performance, for example they will clog up instruction

pipe-lines, data lookahead, slave stores, and even paging systems.

References are like jumps, leading wildly from one part of a data

structure to another. Their introduction into high level languages has

been a step backward from which we may never recover.

c

L

99 Block Structure

In addition to the advantages of disjoint named variables, high level

languages provide the programmer with a powerful tool for achieving even

greater security, namely the scope and locality associated with block

structure. In FORTRAN or ALGOL 60, if the progrrunmer needs a variable for

20
e

c

i

L

,

c

1.

c

c

the purposes of a particular part of his program, he can declare it locally

to that part of the program. This enables the programmer to make manifest

in the structure of his program the close association between the variable

and the code which uses it; and he can be absolutely confident that no

other part of the program, whether written by himself or another, can

ever interfere with, or even look at, the variable without his written

permission, i.e., unless he passes it as a parameter to a particular

named procedure. The use of locality also greatly reduces the width of

the interfaces between parts of the program; the fact that progrmers no

longer need to tell each other the names of their working variables is only

one of the beneficial consequences.

Like all the best programming language features, the locality and

scope rules of ALGOL 60 are not only of great assistance to the programmer

in the decomposition of his task and the implementation of its subtasks;

they also permit economy in the use of machine resources, for example

main store. The fact that a group of variables is required for purposes

local only to part of a program means that their values will usually be

relevant only while that part of the program is being executed. It is

therefore possible to reallocate to other purposes the storage assigned

to these variables as soon as they are no longer required. Since the

blocks of a program in ALGOL 60 are always completed in the exact reverse

of the order in which they were entered, the dynamic reallocation of

storage can be accomplished by stack techniques, with small overhead of

time and space, or none at all in the case of blocks which are not procedure

bodies, for which the administration can be done at compile time. Finally,

the programmer is encouraged to declare at the same time those variables

which will be used together, and these will be allocated in contiguous

locations, which will increase the efficiency of slave storage and paging

techniques.

It is worthy of note that the economy of dynamic reallocation is

achieved without any risk that the programmer will accidentally refer to

a variable that has been reallocated, andthis is guaranteed by a

campile-time and not a run-time check. All these advantages are achieved

in ALGOL 60 by the close correspondence between the statically visible

scope of a variable in a source program and the dynamic lifetime of its

21

c

L

c

storage when the program is run. A language designer should therefore

be extremely reluctant to break this correspondence, which can easily

be done, for example, by the introduction of references which may point

to variables of an exited block. The rules of ALGOL 68, designed to

detect such so-called "dangling references" at compile time, are both

complicated and ineffective; and PL/I does not bother at all.

10. Procedures and Parameters

According to current theories of structured programming, every large

scale programming project involves the design, use, and implementation of

a special-purpose prograznming language, with its own data concepts and

primitive operations, specifically oriented to that particular project.

i

The procedure%nd parameter are the major tool provided for this purpose

by high level languages since FORTRAN. In itself, this affords all the

major advantages claimed for extensible languages. Furthermore, in its

implementation as a closed subroutine, the procedure can achieve very

great economies of storage at run time. For these reasons, the language

designer should give the greatest attention to this feature of his

language. Procedure calls and parameter passing should produce very

compact code. Lengthy preludes and postludes must be avoided. The effect

of the procedure on its parameters should be clearly manifest from its

syntactic form, and should be simple to understand and resistant to error.

e And finally, since the procedure interface is so often the interface

between major parts of a program, the correctness of its use should be

subjected to the most rigorous cxnpile time check.

The chief defects of the FORTRAN parameter mechanism are:

L

(1) It fails to give a notational distinction at the call side

between parameters that convey values into a procedure, that convey

values out of a procedure, and that do both. This negates many of the

advantages which the assignment statement has over machine code

programming.

(2) The shibboleth of independent compilation prohibits compile time

checks on parameter passing, just where interface errors are most likely

and most disastrous and most difficult to debug.

22

t.

c

L

tc

c

e

c

(3) The ability to d f'e ine side effects of function calls negates

many of the advantages of arithmetic expressions.

A-t least FOKIXAN permits efficient implementation, unless a

misguided but all too frequent attempt is made to permit a mixture of

languages across the procedure interface. A subroutine that does not

know whether it is being called from ALGOL or from FORTRAN has a hard

life.

ALGOL 60 perpetuates all these disadvantages, but not the advantage.

The difficulty of compile time parameter checking is due to the absence

of parameter specifications. Even if an implementation insists on full

specification (and most do), the programmer has no way of specifying the

parameters of a formal procedure parameter. This is one of the excuses

for the inefficiency of many ALGOL implementations. The one great advance

of ALGOL 60 is the value parameter, which is immeasurably superior to

the dummy parameter of FORTRAN and PL/I. What a shame that the name

parameter is the default!

Rut perhaps the most subtle defect of the ALGOL 60 parameter is

that the user is permitted to pass the same variable twice as an actual

parameter corresponding to two distinct formal parameters. This

immediately violates the principle of disjointness, and can lead to many

curious, unexpected effects. For example, if a procedure

matrix multiply (A,B,c)

is intended to have the effect

A := BxC ,e
it would seem reasonable to square A bY

matrix multiply (A,A,A) .

_ This error is prohibited in standard FORTRAN, but few programmers realize

i t , and it is rarely enforced by compile time or run time check. No

wonder the procedure interface is the one on which run time debugging

aids have to concentrate.

11. Types

Among the most trivial but tiresome errors of low level programming

are type errors, for example, using a fixed point operation to add floating

23

point numbers, using an address as an integer or vice versa, or forgetting

c

L

L

the position of a field in a data structure. The effects of such errors,

although fully explicable in terms of bit patterns and machine operations,

are so totally unrelated to the concepts in terms of which the programmer
. .

is thinking that the detection and correction of such errors can be

exceptionally tedious. The trouble is that the hardware of the computer

is far too tolerant and forgiving. It is willing to accept almost any

sequence of instructions and make sense of them at its own level. That is

the secret of the power, flexibility, and simplicity, and even reliability

of czsnputer hardware, and should therefore be cherished.

But it is also one of the main reasons why we turn to high level

languages, which can eliminate the risk of such error by a compile time

check. The programmer declares the type of each variable, and the

compiler can Work out the type of each result; it therefore always knows

what type of machine code instruction to generate. In cases where there

is no meaningful operation (for example, the addition of an integer and

a Boolean), the compiler can inform the programmer of his mistake, which

is far better than having to chase its curious consequences after the

program has run.

However, not all language designers would agree. Sane languages, by

complex rules of automatic type transfers and coercions, prefer the

dangerous tolerance of machine code, but with the following added

disadvantages:

(1) The result will often be "nearly" right, so that the programmer

has less warning of his error.

(2) The inefficiency of the conversion is often a shock.

(3) The language is much complicated by the rules.

(4) The introduction of genuine language extensibility is made

much more difficult.

Apart from the elimination of risk of error, the concept of type is

of vital assistance in the design and documentation phases of program

development. The design of abstract and concrete data structures is one

of the first tools for refining our understanding of problems, and for

24

c

i

c

c

c

defining the common interfaces between the parts of a large program.

The declaration of the name and structure or range of values of each

variable is a most important aspect of clear programming, and the formal

description of the relationship of each variable to other program

variables is a most important part of its annotation; and finally an

informal description of the purpose of each variable and its manner of use

is a most important part of program documentation. In fact, I believe

a language should enable the programmer to declare the units in which

his numbers are expressed, so that a compiler can check that he is not

confusing radians and degrees, adding heights to weights or comparing

meters with yards.

Again not all language designers would agree. Many languages do

not require the programmer to declare his variables at all. Instead

they define-complex default rules which the compiler must apply to

undeclared variables. But this can only encourage sloppy program

design and documentation, and nullify many of the advantages of block

structure and type checking; the default rules soon get so complex that

they are very likely to give results not expected by the programmer, and

as ludicrously or subtly inappropriate to his intentions as a machine

code program which contains a type error.

Of course, wise prograznmers have learned that it is worthwhile to

expend the effort to avoid these dangers. They eagerly scan the compiler

listings to ensure that every variable has been declared, and that all

the characteristics assigned to it by default are acceptable. What a pity

that the designers of these languages take such trouble to give such

trouble to their users and themselves.

12. Language Feature Design

This paper has given many practical hints on how not to design a

programming language. It has even suggested that many recent languages

have followed these hints. But there are very few positive hints on

what to put into your next language design. Nearly everything I have

ever published is full of positive and practical suggestions for

programming language features, notations, and implementation methods;

25

furthermore, for the last ten years, I have tried to pursue the sme

objectives in language design that I have expounded hercl; :Lnd r have

tried to make my proposals as convincing as I could. And. ;yct I EL:LVT:

never designed a programming language, -- only programmini; language

features. It is my belief that these two design activities should

be more clearly separated in the future.

at a

well

that

ness

(1) The designer of a new feature should concentrate on one feature

time. If necessary, he should design it in the context of some

known programming language which he likes. He should make sure

his feature mitigates some disadvantage or remedies some incomplete-

of the language, without compromising any of its existing merits.

He should show how the feature can be simply and efficiently implemented.

He should write a section of a user manual, explaining clearly with

examples how the feature is intended to be used. He should check

carefully that there are no traps lurking for the unwary user, which

cannot be checked at compile time. He should write a number of example

programs, evaluating all the consequences of using the feature, in

comparison with its many alternatives. And finally if a simple proof

rule can be given for the feature, this would be the final accolade.

(2) The language designer should be familiar with many alternative

features designed by others, and should have excellent judgment in

choosing the best, and rejecting any that are mutually inconsistent.

He must be capable of reconciling, by good engineering design, any

remaining minor inconsistencies or overlaps between separately designed

features. He must have a clear idea of the scope and purpose and range

of application of his new language, and how far it should go in size and

complexity. He should have the resources to implement the language on

one or more machines, to write user manuals, introductory texts,

advanced texts; he should construct auxiliary programming aids and

library programs and procedures; and finally, he should have the

political will and resources to sell and distribute the language to its

intended range of customers. One thing he should not do is to include

untried ideas of his own. His task is consolidation, not innovation.

26

13 l Conclusion

A final hint: listen carefully to what language users say they

want, until you have an understanding of what they really want. Then
find some way of achieving the latter at a small fraction of the cost. .
of the former. This is the test of success in language design, and

of progress in programming methodology. Perhaps these two are the same

subject anyway.

i

APPENDIX

Annotated Reading List

Report on the Algorithmic Language ALGOL 60.
ed. P. Naur.

The more I ponder the principles of language design, and the

techniques which put them into practice, the more is my amazement and

admiration of ALGOL 60. Here is a language so far ahead of its time,

that it was not only an improvement on its predecessors, but also on

nearly all its successors.

Of particular interest are its introduction of all the main program

structuring concepts, the simplicity and clarity of its description,

rarely equalled and never surpassed. Consider especially the avoidance

of abbreviation in the syntax names and equations, and the inclusion of

examples in every section.

Remaining Troublespots in ALGOL 60.
D. E. Knuth
Comm. ACM. 10, 10 (October 1967).

Most of these troublespots have been eliminated in the widely used

subsets of the language. When you can design a language with so few

troublespots, you can be proud. The real remaining troublespot is the

declining quality of implementations.

27

A Contribution to the Development of ALGOL.
N. Wirth and C. A. R. Hoare
Corm. ACM 9, 6 (June 1966).

This language is widely known as ALGOL W. It remedies many of the

defects of ALGOL 60, and includes many of the good features of FORTRAN IV-.
and LISP. Its introduction of references avoids most of the defects

described in Section 9. It has been extremely well implemented on the

IBM 360, and has a small and scattered band of devoted followers.

PL/~~o.
N. Wirth
Journal of the ACM. 15, 1 (January 1968).

This introduces the benefits of program structures to low level

programming for the IBM/J~O. It was hastily desigend and implemented

as a tool for implementing ALGOL W; it excited more interest than--.
ALGOL W, and has been widely imitated on other machines.

The Programming Language PASCAL.
N. Wirth
Acta Informatica 1, 1 (1971), 35-63 l

Designed to combine the machine-independence of ALGOL W with the

efficiency and control of PL/~~o. New features are the simple but

powerful and efficient type definition capabilities, including sets

and a very clean treatment of files. When used to write its own

translator, it achieves a remarkable combination of clarity af structure

and detail together with high efficiency in producing good object code.

I Structured Programming. (Academic Press, 1972)
O-J. Dahl, E. W. Dijkstra, C. A. R. Hoare.

Expounds a systematic approach to the design and development and

documentation of computer programs. The last section is an excellent

introduction to SIMULA 67 and the ideas which underlie it.

Recursive Functions of Symbolic Expressions and Their Computation by
Machine. Part 1.

J. McCarthy
Comm. ACM. 3, 4 (April 1960).

Describes a beautifully simple and powerful fully functional lanwage

for symbol manipulation. Introduces the scan-mark garbage collection

28

c

technique which makes such languages feasible. LISP has some good

interactive implementations, widely used in artificial intelli.i;ence

projects. It has also been extended in many ways, some good and some

bad, some local and some short-lived.

i. ASA Standard FORTRAN
Corm. ACM 7, 10 (October 1964).

This language had the right objectives. It introduces the array,

f

L

the arithmetic expression and the procedure. The parameter mechanism is

very efficient, and potentially secure. It has some very efficient

implementations for numerical applications. When used outside this field

it is a little more helpful or machine-independent than assembly code,

and can be remarkably inefficient. Its input/output is cumbersome, prone

to error, and surprisingly inefficient. The standardizers have maintained-=.
the horrors of early implementations (the equivalence algorithm, second

level definition), and have resolutely set their face against the advance

of language design technology, and have thereby saved it from many later

horrors.

ASA Standard COBOL.
Coda@ COBOL Journal of Development, 1968.
National Bureau of Standards Handbook 106.

(c Describes a language suitable for simple applications in business

data processing. It contains good data structuring capability, but poor

L

facilities for abstraction. It aimed at readability, but unfortunately

achieved only prolixity; it aimed to provide a complete programming tool,

in a way few languages have since. It is poor for variable format

processing. The primacy of the character data item make it rather

inefficient on modern machines; and the methods provided to regain

i

efficiency (e.g. SYNCHRONISED) often introduce machine-dependency and

insecurity.

c 29

