Software methodology and snake oil

* programming is hard
- programs are very expensive to create
- full of errors
- hard to maintain
* how can we design and program better?
- a fruitful area for people selling "methodologies"
- for nearly 40 years
+ each methodology has the germ of a useful idea
- each claims to solve major programming problems
- some are promoted with religious fervor
* in fact most don't seem to work well
- or don't seem to apply to all programs
- or can't be taught to others

- a few are genuinely useful and should be part of everyone's
repertoire

Examples...

+ modularity, information hiding, coupling, cohesion
+ structured programming (programming without goto's)

- top-down development, successive refinement

- chief programmer teams, egoless programming

- structured X: design, analysis, requirements, specification, walkthroughs...
+ CASE tools (Computer Aided Software Engineering)

- UML (Unified Modeling Language), message sequence charts, state diagrams
* formal methods

- verification, validation, correctness proofs, model checking
- object-oriented programming

- CRC cards (Class, Responsibilities, and Collaborators)

- object-oriented everything
design, analysis, requirements, specification, walkthroughs...

* RAD (rapid application development)
- components, COTS (Components off the Shelf)
- 4th generation languages, automatic programming, X by example, graphical programminc
- extreme programming, refactoring, agile methods, pair programming, ...
- aspect oriented programming
- design patterns
- patterns of everything

Design patterns

- "Design patterns ... describe simple and elegant solutions to
specific problems in object-oriented software design."

- Design Patterns: Elements of Reusable Object-Oriented Software, by
Gamma, Helm, Johnson, Vlissides (the "Gang of Four"), 1995

- "idioms for design" or program structure
- successful among broad group of programmers
- widely used to describe software structure

- three basic categories:
- creational: making things
- structural: organizing things
- behavioral: operating things

Bridge (or "handle/body") pattern

+ "Decouple an abstraction from its implementation so that the two can
vary independently"
+ C++ string class: separate handle from body

- implementation can be changed without changing abstraction of "string"
class String {

private:
Srep *p;

public:

class Srep {
char *sp; // data
int n; // ref count

};
+ similar examples:
- FILE * in C stdio, RE * in regexpr interface, connection in MySQL interface
+ change of implementation has no effect on client
- can even switch implementation at run time
* (in € and C++) hides implementation completely
- C: hidden behind opaque type; C++: implementation class is invisible
* can share implementation among multiple objects without revealing the
sharing
- eg., reference counting, sharing of open files in FILE*

Adapter (or Wrapper) pattern

- "Convert the interface of one class into another interface that
clients expect"

* maps one interface into another
- more or less at the same level

* e.g., in the C stdio package:
fread(buf, objsize, nobj, stream)
fwrite(buf, objsize, nobj, stream)

are wrappers around

read(fd, buf, size)
write(fd, buf, size)

Decorator pattern

- "Attach additional responsibilities to an object dynamically"

- decorator conforms to interface it decorates

- transparent to clients

- forwards some requests

- usually does some actions of its own before or after
- e.g., Java Swing JScrollPane class

JTextArea tpay = new JTextArea(l5, 45);
JScrollPane jsp = new JScrollPane(tpay,
JScrol IPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrol IPane . HORIZONTAL_SCROLLBAR_ALWAYS) ;
[~1oj x|
Principal [20000 | InterestRate 5 | MonthiyPayment 300 |

Payment Schedule:
7 2384 27616 3,298 81 [e=i|
7z 22.00 278.00 2.021.81 Update

79 2014 279.845 2,741 .96
80 18.28 281.72 246024
81 16.40 28360 2,176 64
82 1451 28549 1.881.15 =
83 1261 28739 1,603.76 e
g4 10.69 2801 1,314.45
85 B.76 2481.24 1,023.11
86 B.82 28318 T30.03
87 487 29513 43480
B3 290 28710 137.80
89 0.92 137.80 0.oo
B,538.72 20,000.00

Clear

4]

Decorator pattern (2)

FilelnputStream fin = new FilelnputStream(args[0]);
FileOutputStream fout = new FileOutputStream(args[1]);

BufferedlnputStream bin = new BufferedlnputStream(fin);
BufferedOutputStream bout = new BufferedOutputStream(fout);

- responsibility for buffering attached dynamically
- interface remains unchanged
* transparent to clients

Other structural patterns

- Composite: "Compose objects into tree structures to represent
part-whole hierarchies."
- can treat individual objects and composition of objects uniformly
- e.g., window systems

- Facade: '"Provide a unified interface to a set of interfaces in a
subsystem."

- provides a higher-level interface to something underneath that remains
visible and accessible

- graphics interfaces (e.g., X widgets -> X toolkits -> X intrinsics -> Xlib)
- simplified socket package (Perl and others)

* Proxy: "Provide a surrogate or placeholder for another object
to control access to it."
- smart pointers, scoped pointers
- proxy servers for web

Creational patterns

- Abstract Factory: "Provide an interface for creating families of
related or dependent objects." (also Builder and Factory)

- DOM and SAX builder factories

- Singleton: "Ensure a class only has one instance"
- Java System, Runtime, Math classes

* Prototype: "Specify the kinds of objects to create using a
prototypical instance, and create new objects by copying this

prototype."
- Javascript objects

Behavorial patterns

- Observer: "Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically"

- Java ActionListener mechanism:

button.addActionListener(this)

- tells button to notify this container when event happens

- usually called by container that contains object that will get the event
- can have more than one listener

void actionPerformed(ActionEvent e) { .. }
- called when event occurs

- determines type or instance that caused event

- handles it

Behavorial patterns (2)

- Iterator: "Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation”
- the basis of algorithms in C++ STL

Map hs = new TreeMap();

for (lterator it : hs.keySet()) {
String n = (String) i1t.next();
Integer v = (Integer) hs.get(n);

- Visitor: "Represent an operation to be performed on the elements
of an object structure"

- almost any tree walk that does some evaluation at each node
- draw() where one kind of "Shape" is an entire picture made of Shapes

- Memento: "Without violating encapsulation, capture and
externalize an object's internal state so that the object can be
restored to this state later"

- Java serialization
- JSON, XML, ...

Behavioral patterns (3)

- Interpreter: "Given a language, define a representation for its
grammar along with an interpreter that uses the presentation to
interpret sentences in the language"

* regular expression processors
- eval(...) or execute(...) in many languages
- printf format strings?

- domain-specific / application-oriented languages
- JSON, XML, HTML, CSS, etc.

Makefiles

find command

Shell, Awk, ...

AMPL, R, ...

TEX et al

Summary

- design patterns:

- auseful idea
a way to think about, organize, talk about programming
likely to still be around in 10 years

worth knowing the idea
worth recognizing some of the common ones
will help you to look alert in an interview

- methodologies more broadly:
- usually a germ of a good idea
enthusiasm, initial success in a small sample
leads to unwarranted generalization
thus oversold or hyped

healthy skepticism is warranted

