
Software components
• software re-use

– libraries, etc.
– inter-language linkage

• the Microsoft way
– COM: the Component Object Model
– Visual Basic: scripting, embedding, viruses
– .NET
– C#

• other approaches to components
– CORBA, Java RMI, JavaBeans, ...

Software re-use
• how do we re-use code written by others?

– "If I have seen further than others, it is because I have stood on the 
shoulders of giants."

• source code
– e.g., open source 

• libraries of compiled code
– e.g., archives of object files on Unix, DLL's on Windows, Java packages, ...

• classes
– C++ Standard Template Library
– Java Collection framework
– ...

• objects
• components
• mashups
• application program interfaces (APIs)



Libraries
• linking to previously compiled code
• static linking: all called routines are included in executable
• dynamic linking

– called routines located and linked in on demand
shared libraries on Unix (.so == "shared object")
dynamic link libraries (DLL's) on Windows
plug-ins in browsers

• advantages of dynamic linking
– no cost if a particular routine is not called
– minor startup cost for initialization when called
– minimal cost when running (extra indirection for call)
– library code is shared among all simultaneous uses
– can update libraries without updating entire program

• some disadvantages
– runs in same address space as rest of program, may lead to security issues
– DLL hell on Windows: inconsistencies among versions

especially after install then uninstall

COM: Microsoft's component object model

• binary standard for creating & using components
– components can be written in any language

IDL (interface definition language) to describe arguments and return values, 
generate necessary code

– components can be in same process, 
separate process on same machine, or on some other machine (DCOM)

DCOM transports include TCP/IP and HTTP
– supporting libraries marshal arguments, call functions, retrieve results

all happens transparently to process that uses it
– integral part of Microsoft systems

available on non-MS operating systems (sort of?)

• COM components are objects with interfaces
– interface: functions that provides access to methods

based on C++ virtual function calls, but implementable in any language
– 128-bit GUID (globally unique identifiers)

stored in Windows registry so others can find it



ActiveX
• Microsoft's name for technologies and services based on COM

• ActiveX components are COM objects
– executable code that packages an object as

.EXE (standalone executable)

.DLL (dynamic link library)

.OCX (visual interface control)

• ActiveX controls
– COM components with user-interface aspects
– written in C++, Java, VB, …
– can be used in web pages (analogous to applets, but less restricted)
– can be controlled with VBScript, JScript and other scripting languages

• ActiveX documents
– lets users view and edit non-HTML documents through the browser
– integrates existing documents into browser or any other application 

Calling a COM object
• conceptually, what happens when a COM object is called from a 
program... 

• first time
– find its code

look up in Windows registry
registered during install or when created or by explicit call

– do any initialization
Windows needs to keep track of what DLLs are in use

– link it into current program (if a DLL)
fill in calls with pointer to real code: vtbl

• each subsequent method call
– collect arguments into proper form ("marshalling")
– call function
– convert return value and output arguments into proper form

• when done
– do any finalization
– release resources

last user tells Windows that DLL is no longer in use



Alternative approaches
• CORBA (Common Object Request Broker Architecture)

– industry consortium (OMG: Object Management Group)
– client-server model, using objects
– object-request broker (ORB)

communicates client requests to target objects, finds object implementation, 
activates it if necessary, delivers request, and returns response

– IDL (interface definition language) and compiler for specifying and 
implementing interfaces

• Java RMI (Remote Method Invocation)
– a remote procedure call mechanism
– call objects located (usually) on other systems
– very loosely equivalent to (D)COM
– can pass objects, not just primitive types

• Java Beans (marketing name for Java components)
– an API for writing component software in Java
– components expose features (methods & events)
– visual application builder tools determine properties by "introspection" or 

"reflection": can query an object about its properties
– loosely analogous to ActiveX components
– attempting to solve same problems as COM and CORBA, but within Java

Visual Basic 
• a programming language

– modern dialect of Basic (John Kemeny ('47, *49) and Tom Kurtz (*56), 1964)
– reasonable control flow, data types, arrays, structures

• a toolkit 
– standard library for math, file I/O, text manipulation
– user interface components: buttons, text, menus, ...
– extensible: easy access to entire Windows API and existing objects

can add own C/C++ code and create new controls
– a "glue" language for assembling from pre-built pieces

• an integrated development environment
– interactive system for building and testing VB programs

draw interface by dragging and dropping components
fill in behaviors in code templates, set properties like size, color, position, …
manage/edit source code and other resources
run in controlled environment for test and debug, compile and export as .EXE file

• an extension mechanism
– embedded (as VBA) in many other programs, including Word, Excel,

Powerpoint, Outlook; can easily extend their capabilities
– a vehicle for distributing viruses



Component scripting
• component exposes what it can do as an object interface: 
methods, properties, events
– can control object from a programming language that can access objects

• a large industry creates such components
– written in VB, C++, etc.

• VBScript is a scripting version of VB for controlling scriptable
objects
– can use it to control scriptable programs
– also CScript, WScript, PowerShell, ...

• Visual Basic for Applications (VBA) is a version of VB that lives 
inside some programs
– notably Word, Excel, other Office programs, Outlook, …
– can use it to control them and other scriptable programs

• in general, can do anything from a program that is possible from
keyboard and mouse
– macro recorder to create command sequences
– shell escape to run other processes
– network libraries to access other systems

Security issues
• VB embedding and scripting is a mixed blessing

– useful properties: can easily extend capabilities, customize behaviors
– lots of not so nice properties: viruses are very easy

• scripts, plug-ins, applets let others run their code on your machine
• how can this be made safe (enough)?
• code-signing (Microsoft's "Authenticode")

– uses crypto to assure that code comes from who it says it does
– and that it hasn't been tampered with
– but NOT that it works properly

doesn't protect against bugs, invasion of privacy, ...
• sandboxing (Java applets, Javascript)

– isolate code inside virtual machine or similar
– limits capabilities (e.g., no access to local file system)
– doesn't protect against bugs in programs
– or bugs in the security model and implementation

• perfect security is not possible
– see Doug McIlroy's Virology 101 paper


