
Java history
• invented mainly by James Gosling ([formerly] Sun Microsystems)

• 1990: Oak language for embedded systems
– needs to be reliable, easy to change, retarget
– efficiency is secondary
– implemented as interpreter, with virtual machine

• 1993: run in a browser instead of a microwave
– renamed "Java"
– Java Virtual Machine (JVM) runs in browser

• 1994: Netscape supports Java in their browser
– enormous hype: a viable threat to Microsoft

• 1997-2002: Sun sues Microsoft multiple times over Java
– MSFT guilty of anti-competitive actions
– mostly settled by 4/04

• significant language changes in Java 1.5 (9/04)
– generics, auto box/unbox, for loop, annotations, ...
– Java 1.6 (== 6.0) 12/06 is mostly incremental changes

Java vs. C and C++
• no preprocessor

– import instead of #include
– constants use static final declaration

• C-like basic types, operators, expressions
– sizes, order of evaluation are specified

• object-oriented
– everything is part of some class
– objects all derived from Object class
– klunky mechanisms for converting basic <-> object

• references instead of pointers for objects
– null references, garbage collection, no destructors
– == is object identity, not content identity

• all arrays are dynamically allocated
int[] a; // a is now null
a = new int[100];

• strings are more or less built in
• C-like control flow, but

– labeled break and continue instead of goto
– exceptions: try {…} catch(Exception) {…}

• threads for parallelism within a single process

Basic data types

• Java tries to specify some of the unspecified or undefined parts
of C and C++

• basic types:
– boolean true / false (no conversion to/from int)
– byte 8 bit signed
– char 16 bit unsigned (Unicode character)
– int 32 bit signed
– short, long, float, double

• String is sort of built-in (an Object)
– "..." is a String
– holds 16-bit Unicode chars, NOT bytes
– does NOT have a null terminator; String.length() returns length
– + is string concatenation operator; += appends
– immutable: string operations make new strings

Classes & objects in Java
• everything is part of some object

– all classes are derived from class Object
• member functions & variables defined inside class

– internal functions should not be public, variables should never be public
• every object is an instance of some class

– created dynamically by calling new
• class variable: a variable declared static in class

– only one instance in entire program, exists even if the class is never
instantiated

– the closest thing to a global variable in Java

public class RE {
static int num_REs = 0;
public RE(String re) {

num_REs++;
...

}
public static int RE_count() {

return num_REs;
}

Class methods
• most methods associated with an object instance
• if declared static, amounts to a global function

class RE {
public boolean equals(RE r) {
return re.equals(r.re);

}
public static boolean equals(RE r1, RE r2) {
return r1.re.equals(r2.re);

}
public static void main(String[] args) {
RE r1 = new RE(args[0]);
RE r2 = new RE(args[1]);
if (r1.equals(r2)) ... // member function
if (equals(r1, r2)) ... // static function
if (r1 == r2) ... // object equality

}

• some classes are entirely static members and class functions,
e.g., Math, System, Color
– can't make a new one: no constructor

Scope and visibility
• only one public class per file

– public class hello { } has to be in hello.java
• public methods of the class are visible outside the file
• other methods are not

– default is file private
• other classes in a file are visible within the file
• but not visible outside the file

• variables of a class are always visible within the class
• and to other classes in the same file unless private

• static variables are visible to all class instances
class Math {

public static double PI = 3.141592654; // etc.

}

double d = Math.cos(Math.PI);

Destruction & garbage collection
• interpreter keeps track of what objects are currently in use
• memory can be released when last use is gone

– release does not usually happen right away
– has to be garbage-collected

• garbage collection happens automatically
– separate low-priority thread does garbage collection

• no control over when this happens
– can set object reference to null to encourage it

• no destructor (unlike C++)
– can define a finalize() method for a class to reclaim other resources,

close files, etc.
– no guarantee that a finalizer will ever be called

• garbage collection is a great idea
– but this does not seem like a great design

I/O and file system access
• byte I/O for raw data

– read(), write(), InputStream, OutputStream

• character I/O for Unicode (Reader, Writer)
– InputReader and OutputWriter

– InputStreamReader, OutputStreamWriter

– BufferedReader, BufferedWriter

• byte-at-a-time I/O
– System.in, .out, .err like stdin, stdout, stderr
– read() returns next byte of input, -1 for end of file
– any error causes an I/O Exception

import java.io.*;

public class cat1 {
public static void main(String args[]) throws IOException {

int b;

while ((b = System.in.read()) >= 0)
System.out.write(b);

}
}

Buffered byte I/O to/from files
• buffering is usually required; too slow otherwise

import java.io.*;

public class cp2 {
public static void main(String[] args) throws IOException {
int b;

FileInputStream fin = new FileInputStream(args[0]);
FileOutputStream fout = new FileOutputStream(args[1]);
BufferedInputStream bin = new BufferedInputStream(fin);
BufferedOutputStream bout = new BufferedOutputStream(fout);

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

}
}

Exceptions
• C-style error handling

– ignore errors -- can't happen
– return a special value from functions, e.g.,

-1 from system calls like open(), NULL from library functions like fopen()
• leads to complex logic

– error handling mixed with computation
– repeated code or goto's to share code

• limited set of possible return values
– extra info via errno and strerr: global data
– some functions return all possible values

so no possible error return value is available
• exceptions are the Java solution (also in C++)
• exception indicates unusual condition or error
• occurs when program executes a throw statement
• control unconditionally transferred to catch block
• if no catch in current function, passes to calling method
• keeps passing up until caught

– ultimately caught by system at top level

try {…} catch {…}
• a method can catch exceptions

public void foo() {
try {

// if anything here throws an IO exception
// or a subclass, like FileNotFoundException

} catch (IOException e) {
// this code will be executed to deal with it

} finally {
// this is done regardless

}

• or it can throw them, to be handled by caller
• a method must list exceptions it can throw

– exceptions can be thrown implicitly or explicitly

public void foo() throws IOException {
// if anything here throws any kind of IO exception
// foo will throw an exception, to be handled by its caller

}

With exceptions
public class cp2 {

public static void main(String[] args) {
int b;

try {
FileInputStream fin = new FileInputStream(args[0]);
FileOutputStream fout = new FileOutputStream(args[1]);
BufferedInputStream bin = new BufferedInputStream(fin);
BufferedOutputStream bout = new BufferedOutputStream(fout);

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

} catch (IOException e) {
System.err.println("IOException " + e);

}
}

}

Why exceptions?
• reduced complexity

– if a method returns normally, it worked
– each statement in a try block knows that previous statements worked,

without explicit tests
– if the try exits normally, all the code in it worked
– error code is grouped in a single place

• can't unconsciously ignore possibility of errors
– have to at least think about what exceptions can be thrown

public static void main(String args[]) throws IOException {
int b;
while ((b = System.in.read()) >= 0)

System.out.write(b);
}

• don't use exceptions for normal flow of control
• don't use for "normal" unusual conditions

– e.g., in.read() returns –1 for EOF instead of throwing an exception

– should a file open that fails throw an exception?

Character I/O (char instead of byte)
• use a different set of functions for char I/O
• works properly with Unicode ('\u1234' literals)
• InputStreamReader adapts from bytes to chars
• OutputStreamWriter adapts from chars to bytes
• use Buffered(Reader|Writer) for speed

public class cat3 {
public static void main(String[] args) throws IOException {
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

BufferedWriter out =
new BufferedWriter(new OutputStreamWriter(System.out));

String s;
while ((s = in.readLine()) != null) {
out.write(s);
out.newLine();

}
out.flush(); // required!!

}
}

Unicode (www.unicode.org)

• universal character encoding scheme
– ~100,000 characters today

• UTF-16: 16 bit internal representation
– encodes all characters used in all languages

numeric value, name, case, directionality, …
– expansion mechanism for > 216 characters

• UTF-8: byte-oriented external form
– variable-length encoding, self-synchronizing within a couple of bytes
– ASCII compatible: 7-bit characters occupy 1 byte

00000000 0bbbbbbb → 0bbbbbbb

00000bbb bbbbbbbb → 110bbbbb 10bbbbbb

bbbbbbbb bbbbbbbb → 1110bbbb 10bbbbbb 10bbbbbb

– analogous longer encoding for chars in extended set
• Java supports Unicode

– char data type is 16-bit Unicode
– String data type is 16-bit Unicode chars
– \uhhhh is Unicode character hhhh (h == hex digit); use in "..." and '.'

Visibility
• private, public, protected

public class foo { // people can use this class
private v; // can't see this variable
public void f(); // can use this public method

• public class, method or variable
– visible everywhere

• private method or variable
– only by methods of the class

• protected method or variable
– only by methods of the class, subclasses, and other classes in the same

package
• default visibility ("package" visibility)

– only visible in class that defines it and other classes in the same package
(but not subclasses in other packages)

• package
– a group of related and possibly cooperating classes
– all non-private variables & members visible to all other classes in package
– loosely, like mutual friends in the C++ sense

