Life cycle of an object

+ construction: creating a new object
- implicitly, by entering the scope where it is declared
- explicitly, by calling new
- construction includes initialization
* copying: using existing object to make a new one
- "copy constructor" makes a new object from existing one of the same kind

- implicitly invoked in (some) declarations, function arguments, function
return

+ assignment: changing an existing object
- occurs explicitly with =
- meaning of explicit and implicit copying must be part of the representation
default is member-wise assignment and initialization
+ destruction: destroying an existing object
- implicitly, by leaving the scope where it is declared
- explicitly, by calling delete on an object created by new
- includes cleanup and resource recovery

Strings: constructors & assignment

+ another type that C and C++ don't provide
- implementation of a String class combines
constructors, destructors, copy constructor
assignment, operator =

constant references

handles, reference counts, garbage collection

+ Strings should behave like strings in Awk, Perl, Java
- can assign Yo a string, copy a string, etc.
- can pass them to functions, return as results, ...
- storage managed automatically
- no explicit allocation or deletion
- grow and shrink automatically
- efficient

* can create String from "..." C char* string
* can pass String to functions expecting char*

"Copy constructor”

* when a class object is passed to a function, returned from a
function, or used as an initializer in a declaration, a copy is
made:

String substr (String s, int start, int len)

* a "copy constructor" creates an object of class X from an
existing object of class X
- obvious way to write it causes an infinite loop:
class String {
String(String s) {...} // doesn't work
b
* copy constructor parameter must be a reference so object can
be accessed without copying
class String {
String(const String& s) {...}
//
b
* copy constructor is necessary for declarations, function
arguments, function return values

String class

class String {

private:
char *sp;

public:
String() { sp=strdup(""); } // String s;
String(const char *t) { sp=strdup(t); } // String s("abc");
String(const String &t) { sp=strdup(t.sp); } // String s(t);
~String() { delete [] sp; }

String& operator =(const char *);// s="abc"
String& operator =(const String &);// sl=s2

const char *s() { return sp; } // as char*
}i
- assignment is not the same as initialization
- changes the state of an existing object
+ the meaning of assignment defined by a member function named
operator=
X = y means x.operator=(y)

Assignment operators

String& String::operator =(const char *t) { // s = "abc"
delete [] sp;
sp = strdup(t);
return *this;

}
String& String::operator=(const String& t) { // sl = s2
if (this '= &t) { // avoid sl = sl
delete [] sp;
sp = strdup(t.sp);
}

return *this;

* in a member function, this points to current object, so *this
is a reference to the object

+ assignment operators almost always end with
return *this

which returns a reference to the LHS
- permits multiple assignment s1 = s2 = s3

String class complete

class String {

private:
char *sp;

public:
String() { sp=strdup(""); } // String s;
String(const char *t) { sp=strdup(t); } // String s("abec");
String(const String &t) { sp=strdup(t.sp); } // String s(t);
~String() { delete [] sp; }

String& operator =(const char *);// s="abc"
String& operator =(const String &);// sl=s2

const char *s() { return sp; } // as char*
};
String& String::operator =(const char *s) ({
if (sp !'= s) {
delete [] sp;
strdup(s);
}
return *this;
}
String& String::operator =(const String &t) {
if (this != &t) {
delete [] sp;
strdup(t.sp);
}

return *this;

continued

main ()

{

String s = "abc", t = "def", u = s, w;

printf("%s %s %s [%s]\n",
s.s(), t.s(), u.s(), w.s());
s = "1234";
s = s;
printf ("s=%s\n", s.s());
s = s.s();
printf ("s2=%s\n", s.s());
printf ("u=%s\n", u.s());
s =t =u = "asdf";
printf("%s %s %s\n", s.s(), t.s(), u.s());

Handles and reference counts

* how to avoid unnecessary copying for classes like strings, arrays,
other containers

* copy constructor may allocate new memory even if unnecessary
- e.g., in f(const String& s) string value would be copied
even if it won't be changed by f

* a handle class manages a pointer to the real data
- implementation class manages the real data

- string data itself

- counter of how many Strings refer to that data

- when String is copied, increment the ref count

- when String is destroyed, decrement the ref count

- when last reference is gone, free all allocated memory

+ with a handle class, copying only increments reference count
- "shallow" copy instead of "deep" copy

Reference/Use counts

class Srep { // string representation
char *sp; // data
int n; // ref count

Srep (const char *);
friend class String;

};

Srep: :Srep(const char *s) ({
if (s == NULL)

s = ’
sp = strdup(s);
n=1;
}
class String {
Srep *r;
public:
String(const char ¥*);
String(const String &);
~String();
String& operator =(const String &); // sl = s2;
String& operator =(const char *); // s = "abec";
const char *s() { return r->sp; }
};

use counts, part 2

String::String(const char *s = "") {
r = new Srep(s); // String s="abc"; String sl;
}
String::String(const String &t) { // String s=t;
t.r->n++; // ref count
r = t.r;
}
String::~String() {
if (--r->n <= 0) {
delete [] r—->sp;
delete r;
}
}

String& String::operator =(const char *s) {

if (r->n > 1) { // disconnect self
r->n--—;
r = new Srep(s);

} else {
delete [] r->sp; // free old String

r->sp = strdup(s);
}
return *this;
}
String& String::operator =(const String &t) {
t.r->n++; // protect against s = s
if (——r->n <= 0) { // nobody else using it
delete [] r—->sp;
delete r;
}
r = t.r;
return *this;

Rules for constructors and assignment operators

all objects have to have a constructor

- if you don't specify a constructor the default constructor copies members
by their constructors

- need a no-argument constructor for arrays
- constructors should initialize all members
« if constructor calls new, destructor must call delete
- use delete [] for an array allocated with new T[n]
+ copy constructor X(const X&) makes an object
- from another one without making an extra copy
- if there's a complicated constructor
- there will have to be an assignment operator
- make sure that x = x works
- assignment is NOT the same as construction

- constructors called in declarations, function arguments and function
returns, to make a new object

- assignments called only in assignment statements
to clobber an existing object

Inheritance

*+ a way to create or describe one class in terms of another
"a D is like a B, with these extra properties..."

"aDisaB, plus.."

B is the base class or superclass

D is the derived class or subclass
Perl| & C++ use base/derived; Java uses super/sub

+ inheritance is used for classes that model strongly related
concepts
- objects share some common properties, behaviors, ...
- and have some properties and behaviors that are different

* base class contains aspects common to all
- derived classes contain aspects different for different kinds

Inheritance and derived classes

- consider different kinds of Investment Vehicles

- stocks, bonds, commodities, currencies, ...

* base class IV contains aspects common to all

- name
- description

- derived classes contain aspects that are different for different

kinds

- stock: ticker symbol, exchange, common/preferred, ...

- bond: coupon, maturity, callable, call date...
- fund: vector of IVs

+ sometimes you care about the difference
- dividend rate vs. interest rate

+ sometimes you don't
- closing price

Derived classes

class IV {
string name; IV
void price();
// other items common to all IV's

IV

Bond

Iv

};
class Stock : public IV {
String ticker;
// other items specific to Stocks
};
class Bond : public IV {
double coupon;
bool callable;
// other items specific to Bonds

};

- a Stock is a derived class of (a kind of) IV

- a Stock'"isa" IV
- inherits all members of IV
- adds its own members
- a Bond is also a derived class of IV

Stock

More on derived classes

- derived classes can add their own data members
- can add their own member functions
- can override base class functions with

functions of same name and argument types

class Stock : public IV {
String ticker;
public:
void price() {...} // overrides IV::price()
}i
class Bond : public IV {
bool callable;

public:
bool is_callable() {...}
void price() {...} // overridesIV::price()
};
Stock gm;

Bond ibm;

gm.price(); // calls Stock: :price()
ibm.price(); // calls Bond::price()

Virtual Functions

* what if we have bunch of different IVs and want to price them
all in a loop?

+ virtual function mechanism lets each object carry information
about what functions to apply

class IV {
public:
virtual void price();

};

* "virtual" means that a derived class may provide its own version
of this function, which will be called automatically for instances
of that derived class

* base class can provide a default implementation

- a "pure" base class must be derived from
- can't exist on its own

Polymorphism

- when a pointer or reference to a base-class type points to a
derived-class object

* and you use that pointer or reference to call a virtual function

* this calls the derived-class function

* "polymorphism": proper function to call is determined at run-time
* e.g., pricing IVs on a linked list:

price_all (IV *ip) {
for (; ip != NULL; ip = ip->next)

ip->price();

* virtual function mechanism automatically calls the right price()
function for each object

* the loop does not change if more kinds of IVs are added

Implementation of virtual functions

* each class object has one extra word that holds a pointer to a

table of virtual function pointers (“vtbl") (only if class has virtual
functions)

- each class with virtual functions has one vtbl
* a call to a virtual function calls it indirectly through the vtbl

Bond B1
Bond B2 vtbl for class Bond

price —{+— code
update

—e

code

Stock S1
=] vitbl for class Stock
— j
price__ —T— code

update ——

code

Stock S2 N

Summary of inheritance

* a way to describe a family of types
* by collecting similarities (base class)
+ and separating differences (derived classes)

* polymorphism: proper member functions determined at run time
- virtual functions are the C++ mechanism

* not every class needs inheritance
- may complicate without compensating benefit

* use composition instead of inheritance?
- an object contains an (has) an object
rather than inheriting from it
+ "is-a" versus "has-a"
- inheritance describes "is-a" relationships
- composition describes "has-a" relationships

Templates (parameterized types, generics)

* another approach to polymorphism
+ compile time, not run time
* a template specifies a class or a function that is the same for

several types
- except for one or more type parameters

* e.g., a vector template defines a class of vectors that can be
instantiated for any particular type
vector<int>
vector<String>

vector<vector<int> >

+ templates versus inheritance:
- use inheritance when behaviors are different for different types
pricing different IVs is different
- use template when behaviors are the same, regardless of types
accessing the n-th element of a vector is the same,
no matter what type the vector is

Vector template class

+ vector class defined as a template, to be instantiated with
different types of elements

template <typename T> class vector {

T *v; // pointer to array
int size; // number of elements
public:

vector (int n=1) { v = new T[size = n]; }

T& operator [] (int n) {
assert(n >= 0 && n < size);

return v[n];

};

vector<int> iv(100); // vector of ints
vector<complex> cv (20); // vector of complex
vector<vector<int> > vvi(10); // vector of vector of int
vector<double> d; // default size

- compiler instantiates whatever is used

Template functions

- can define ordinary functions as templates
- e.g.,max (T, T)

template <typename T> T max(T x, T y) {

return x >y ? x @ y;

* requires operator> for type T
already there for C's arithmetic types

* don't need a type name to use it
compiler infers types from arguments
max (double, double)
max (int, int)
max (int, double) doesn't compile: no coercion

+ compiler instantiates code for each different use in a program

Scoped pointer class

- allocates space when used
* frees it automatically when pointer goes out of scope

template <typename T> class SP {
T *tptr;
public:
SP(T *p) { tptr = p; }
~SP() { printf ("SP destructor %s\n", tptr->fs); delete tptr; }
T* operator ->() { printf("op->%s\n", tptr->fs); return tptr;
};
class ptr {
public:
char *fs;
ptr(char *s) { printf("construct ptr(%s)\n", fs=strdup(s)); }
~ptr() { printf("destruct ptr(%s)\n", £fs); delete fs; }
};
int main() {
printf ("start\n");
SP<ptr> ptrlp = new ptr("new ptrl"),;
SP<ptr> ptr2p = new ptr("new ptr2"),;
ptrlp->fs = "change ptrl value";
printf ("end\n");

Standard Template Library (STL)

Alex Stepanov
(6E > Bell Labs > HP > S6I > Compaq > Adobe)

- general-purpose library of
containers (vector, list, set, map, ..)
generic algorithms (find, replace, sort, ..)

- algorithms written in terms of iterators performing specified
access patterns on containers
- rules for how iterators work, how containers have to support them

* generic: every algorithm works on a variety of containers,
including built-in types
- e.g., find elements in char array, vector<int>, list<..>

+ iterators: generalization of pointer for uniform access to items in
a container

Containers and algorithms

+ STL container classes contain objects of any type
- sequences: vector, list, slist, deque
- sorted associative: set, map, multiset, multimap
hash_set and hash_map are non-standard
+ each class is a template that can be instantiated to contain any
type of object
* generic algorithms
- find, find_if, find_first_of, search, ...
- count, min, max, ...
- copy, replace, fill, remove, reverse, ...
- accumulate, inner_product, partial_sum, ...
- sort
- binary_search, merge, set_union, ...
+ performance guarantees

- each combination of algorithm and iterator type specifies worst-case
(O(...)) performance bound
e.g., maps are O(log n) access, vectors are O(1) access

Iterators

* a generalization of C pointers
for (p = begin; p < end; ++p)
do something with *p

* range from begin() to just before end() [begin, end)
+ ++iter advances to the next if there is one
- *iter dereferences (points to value)

* uses operator != to test for end of range
for (iter i = v.begin(); i != v.end(); ++i)
do something with *i

#include <vector>
#include <iterator>
using namespace ::std;
int main() {
vector<double> v;
for (int i = 1; i <= 10; i++)
v.push_back (i) ;
vector<double>: :const_iterator it;
double sum = 0;
for (it = v.begin(); it != v.end(); ++it)
sum += *it;
printf ("$g\n", sum);

Iterators (2)

* no change to loop if type or representation changes

set<double> v;

set<double>: :const_iterator it;

for (it = v.begin(); it != v.end(); ++it)
sum += *it;

+ not all containers support all iterator operations

* input iterator

- can only read items in order, can't store into them (input from file)
* output iterator

- can only write items in order, can't read them (output to a file)
- forward iterator

- can read/write items in order, can't go backwards (singly-linked list)
+ bidirectional iterator

- can read/write items in either order (doubly-linked list)
+ random access iterator

- can access items in any order (array)

Example: STL sort

#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
using namespace ::std;

int main() { // sort stdin by lines

vector<string> vs;

string tmp;

while (getline(cin, tmp))
vs.push_back (tmp) ;

sort (vs.begin(), vs.end());

copy (vs.begin (), wvs.end(),
ostream iterator<string>(cout, "\n"));

+ vs.push_back(s) pushes s onto "back" (end) of vs

* 3rd argument of copy is a "function object" that calls a function
for each iteration

- uses overloaded operator()

Function objects

* anything that can be applied to zero or more arguments to get a

value and/or change the state of a computation
* can be an ordinary function pointer
* can be an object of a type defined by a class in which the

function call operator operator () is overloaded

template <typename T> class bigger {
public:
bool operator() (T const& x, T consté& y) {
return x > y;

}i
* to sort strings in decreasing order,
vector<string> vs;

sort (vs.begin(), vs.end(), bigger<string>());

* to sort numbers in decreasing order,
vector<double> vd;
sort (vd.begin(), vd.end(), bigger<double>());

Template metaprogramming

* do computation at compile time to avoid computation at run time
- evaluating constants, unrolling loops, building data structures

// from effective c++ 3e, by scott meyers

#include <iostream>
using namespace ::std;

template<unsigned n> struct Factorial ({

enum { value = n * Factorial<n-1>::value };
b
template<> struct Factorial<0> {

enum { value 1},

};

int main()

{
std: :cout << Factorial<5>::value << "\n";
std: :cout << Factorial<l1l0>::value << "\n";

Word frequency count: C++ STL

#include <iostream>
#include <map>
#include <string>

int main() {
string temp;
map<string, int> v;
map<string, int>::const_iterator 1i;

while (cin >> temp)
v[temp]++;
for (i = v.begin(); i != v.end(); ++i)
cout << i-—>first << " "
<< i->second << "\n";

Exception handling

* necessary so libraries can propagate errors back to users
class subscriptrange ({
public:
int n;
subscriptrange(int n) { this->n = n; }
};
inté& ivec::operator [] (int n) {
if (n < 0 || n >= size)
throw subscriptrange (n);
else
return v[n];
}
int g(ivec& v) { return v[1000]; }

int £() {
ivec iv(100);
try {
printf ("normal\n");
return g(iv); // normal return if no exceptions

} catch (subscriptrange sr) ({

printf ("subscriptrange %d\n", sr.n);

return 0; // if subscriptrange raised in g() or anything it cal
} catch (...) { // get here if some other

printf ("other\n");

return -1; // exception was raised

What to use, what not to use?

+ Use

classes

const

const references
default constructors
C++ -style casts

bool

new / delete

C++ string type

* Use sparingly / cautiously

overloaded functions
inheritance

virtual functions
exceptions

STL

- Don't use

malloc / free

multiple inheritance

run time type identification
references if not const
overloaded operators (except
for arithmetic types)

default arguments (overload
functions instead)

