Local Area Networks; Ethernet

* a LAN connects computers in a small area

- Ethernet is the most widely used LAN technology
- developed by Bob Metcalfe & David Boggs (Xerox PARC, 1973)
each host has a unique 48-bit identification number
data sent in "packets" of 100-1500 bytes
includes source and destination addresses, error checking
data rate 10-1000 Mbits/sec; maximum cable lengths
CSMA/CD: carrier sense multiple access with collision detection

sender broadcasts, but if detects someone else sending, stops, waits a random
interval, tries again

hubs and wireless nets simulate cable behavior

) -‘- - :- — :- ﬂ c-oa;al hUb
D EJ h cable f;
hos o3 S~ E
packet: hdr | src | dest data CRC

8 6 6 2 46-1500 4

Internet

connects independent heterogeneous networks
- each network connects multiple computers
- nearby computers connected by local area network
often Ethernet but lots of other choices
networks connected by gateways/routers
- route packets from one network to next
- gateways continuously exchange routing information
each packet passes through multiple gateways
- gateway passes packet to gateway that is closer to ultimate destination
- usually operated by different companies
information travels through networks in packets
- each packet is independent of all others
like individual envelopes through the mail
- all packets have the same format
but are carried on different physical transport media
no central control
ICANN: central authority for resources that have to be unique
- IP addresses, domain names, country codes, ...

Internet mechanisms

* names for networks and computers

— www.cs.princeton.edu, de.licio.us
- hierarchical naming scheme
- imposes logical structure, not physical or geographical

+ addresses for identifying networks and computers

- each has a unique 32-bit IP address (IPv6 is 128 bits)
- ICANN assigns contiguous blocks of numbers to networks (icann.org)
- network owner assigns host addresses within network

+ DNS Domain Name System maps names /addresses

— www._princeton.edu = 128.112.136.12
- hierarchical distributed database
- caching for efficiency, redundancy for safety

* routing to find paths from network to network

- gateways/routers exchange routing info with nbrs

+ protocols for packaging and transporting information, handling errors, ...

- IP (Internet Protocol): a uniform transport mechanism
- at IP level, all info is in a common packet format

- different physical systems carry IP in different formats (e.g., Ethernet, wireless,
fiber, phone,...)

- higher-level protocols built on top of IP for exchanging info like web pages, mail, ...

Protocols

* precise rules that govern communication between two parties
* basic Internet protocols usually called TCP/IP
- 1973 by Bob Kahn *64, Vint Cerf
+ IP: Internet protocol (bottom level)
- all packets shipped from network to network as IP packets
- each physical network has own format for carrying IP packets (Ethernet, fiber, ..)
- no guarantees on quality of service or reliability: "best effort"
+ TCP: transmission control protocol
- reliable stream (circuit) transmission in 2 directions
- most things we think of as "Internet" use TCP
- application-level protocols, mostly built from TCP
- SSH, FTP, SMTP (mail), HTTP (web), ...
+ UDP: user datagram protocol
- unreliable but simple, efficient datagram protocol
- used for DNS, NFS, ...
+ ICMP: internet control message protocol
- error and information messages
- ping, tfraceroute

IP

- unreliable connectionless packet delivery service

- every packet has 20-40B header with
source & destination addresses,

time to live: maximum number of hops before packet is discarded (each gateway
decreases this by 1)

checksum of header information (not of data itself)
- up to 65 KB of actual data
- IP packets are datagrams:
- individually addressed packages, like envelopes in mail
- "connectionless": every packet is independent of all others

- unreliable -- packets can be damaged, lost, duplicated, delivered out of
order

- packets can arrive too fast to be processed
- stateless: no memory from one packet to next
- limited size: long messages have to be fragmented and reassembled

- higher level protocols synthesize error-free communication from
IP packets

TCP: Transmission Control Protocol

* reliable connection-oriented 2-way byte stream
- no record boundaries

if needed, create your own by agreement

* a message is broken into 1 or more packets
- each TCP packet has a header (20 bytes) + data

header includes checksum for error detection,

- sequence number for preserving proper order, detecting missing or

duplicates

- each TCP packet is wrapped in an IP packet

has to be positively acknowledged to ensure that it arrived safely
otherwise, re-send it after a time interval

* a TCP connection is established to a specific host
- and a specific "port" at that host

- each port provides a specific service
- see /etc/services

FTP =21, SSH = 22, SMTP = 25, HTTP = 80

* TCP is basis of most higher-level protocols

Higher level protocols:

- FTP: file transfer

- SSH: terminal session

+ SMTP: mail transfer

* HTTP: hypertext transfer -> Web
- protocol layering:

a single protocol can't do everything

higher-level protocols build elaborate operations out of simpler ones
each layer uses only the services of the one directly below

and provides the services expected by the layer above

all communication is between peer levels: layer N destination receives
exactly the object sent by layer N source

application

reliable transport service

connectionless packet delivery service

physical layer

Network programming

- C
- client, server, socket functions (similar in Perl)
- based on processes & inetd
+ Java
- import java.net.* for Socket, ServerSocket; threads
* Python
- import socket, SocketServer; threads
* underlying mechanism (pseudo-code):
server:
fd = socket(protocol)
bind(fd, port)
listen(fd)
fd2 = accept(fd, port)
while (...)
read(fd2, buf, len)
write(fd2, buf, len)
close(fd2)
client:
fd = socket(protocol)
connect(fd, server IP address, port)
while (...)
write(fd, buf, len)
read(fd, buf, len)
close(fd)

C TCP client

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in._h>
#include <netdb.h>

struct hostent *ptrh; /* host table entry */
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */

sad.sin_family = AF_INET; /* internet */
sad.sin_port = htons((u_short) port);

ptrh = gethostbyname(host); /* IP address of server /
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);
ptrp = getprotobyname(*"tcp™);

fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
connect(sd, (struct sockaddr *) &sad, sizeof(sad));

while (.-..) {

write(fd, buf, strlen(buf)); /* write to server */

n = read(fd, buf, N); /* read reply from server */
}

close(fd);

C TCP server

struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
struct sockaddr_in cad; /* client adr */

memset((char *) &sad, 0, sizeof(sad));
sad.sin_family = AF_INET; /* internet */
sad.sin_addr.s_addr = INADDR_ANY; /* local IP adr */

sad.sin_port = htons((u_short) port);

ptrp = getprotobyname(*"tcp™);

fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
bind(fd, (struct sockaddr *) &sad, sizeof(sad));
listen(fd, QLEN);

while (1) {
fd2 = accept(sd, (struct sockaddr *) &cad, &alen));
while (1) {
read(fd2, buf, N);
write(fd2, buf, N);
}
close(fd2);

}

Perl TCP client

use Socket;

my $host = shift || "localhost®;
my $port = shift || 5194;
my $iaddr inet_aton($host);

my $paddr = sockaddr_in($port, $iaddr);
my $proto = getprotobyname("“tcp”);

socket(SOCK, PF_INET, SOCK_STREAM, $proto) or die "socket:

connect(SOCK, $paddr) or die '"connect: $!';
print "Perl client calling $host $port\n";

while (<STDIN>) {
syswrite(SOCK, $, length($)));
my $reply = <SOCK> || "";
chomp $reply;
print "got [$reply]\n";
last if ($_ =~ /exit/);
}
close(SOCK) ;

IR

Java networking classes

*+ Socket
- client side
- basic access to host using TCP
reliable, stream-oriented connection
- ServerSocket
- server side
- listens for TCP connections on specified port
- returns a Socket when connection is made

- DatagramSocket: UDP datagrams
- unreliable packet service

- URL, URLConnection
- high level access: maps URL to input stream
- knows about ports, services, efc.

- import java.net.*

Client: copy stdin to server, read reply

- uses Socket class for TCP connection between client & server

import java.net.*;
import java.io.*;

public class cli {

"localhost'';
""5194";

static String host =
static String port =
public static void main(String[] argv) {
if (argv.length > 0)
host = argv[O0];
it (argv.length > 1)
port = argv[1];
new cli(host, port);

}

+ (continued...)

Client: part 2

cli(String host, String port) { // tcp/ip version
try {
BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));
Socket sock = new Socket(host, Integer.parselnt(port));
System.err.printIn('client socket ™ + sock);
BufferedReader sin = new BufferedReader(
new InputStreamReader(sock.getlnputStream()));
BufferedWriter sout = new BufferedWriter(
new OutputStreamWriter(sock.getOutputStream()));
String s;
while ((s = stdin.readLine()) !'= null) { // read cmd
sout.write(s); // write to socket
sout.newLine();
sout.flush(Q); // needed
String r = sin.readLine(); // read reply
System.out.printinChost + ™ got [" + r + "]');
if (s.equals(exit'))
break;

sock.close();
} catch (10Exception e) {
e.printStackTrace();
}

Al

Single-thread Java server

- server: echoes lines from client
public class srv {
static String port = "5194";
public static void main(String[] argv) {
it (argv.length == 0)
new srv(port);
else
new srv(argv[0]);

}
srv port) { // tcp/ip version
try {
ServerSocket ss = new ServerSocket(Integer.parselnt(port));
while (true) {
Socket sock = ss.accept();
System.err.printIn(’'server socket " + sock);
new echo(sock);
}
} catch (10Exception e) {
e.printStackTrace();
by
}

1

Rest of server

class echo {
Socket sock;
echo(Socket sock) throws 10Exception {
BufferedReader in = new BufferedReader(
new InputStreamReader(sock.getlnputStream())); // from socl
BufferedWriter out = new BufferedWriter(
new OutputStreamWriter(sock.getOutputStream())); // to socl
String s;
while ((s = in.readLine()) !'= null) {
out.write(s);
out.newLine();
out.flush(Q);
ifT (s.equals('exit™))
break;
by
sock.close();
}
}

- this is single-threaded
- only serves one client at a time

Serving multiple requests simultaneously

* how can we serve more than one at a time?
* in C/Unix, usually start a new process for each conversation
- fork & exec: process is entirely separate entity
- usually shares nothing with other processes
- operating system manages scheduling
- alternative: use a threads package (e.g., pthreads)
- in Java, use threads
- threads all run in the same process and address space
- process itself controls allocation of time (JVM)
- threads have to cooperate (JVM doesn't enforce this)
- threads must not interfere with each other's data and use of time
* Thread class defines two primary methods
- start start a new thread
- run run this thread
- a class that wants multiple threads must
- extend Thread
- implement run()
- call start() when ready, e.g., in constructor

Multi-threaded server

public class multisrv {
static String port = ''5194";

public static void main(String[] argv) {
it (argv.length == 0)
multisrv(port);
else

multisrv(argv[0]);

public static void multisrv(String port) { // tcp/ip version
try {
ServerSocket ss =
new ServerSocket(Integer.parselnt(port));
while (true) {
Socket sock = ss.accept();

System.err._printIn("multiserver " + sock);
new echol(sock);

by
} catch (10Exception e) {
e.printStackTrace();
}

}
}

Thread part...

class echol extends Thread {

echol(Socket sock) {
this.sock = sock;

start();

}

public void run() {
try {

BufferedReader in = new BufferedReader(new
InputStreamReader (sock.getlnputStream()));
BufferedWriter out = new BufferedWriter(new
OutputStreamWriter(sock.getOutputStream()));
String s;
while ((s = in.readLine()) != null) {
out.write(s);
out_.newLine();
out.flush(Q);

System.err.printIn(sock.getlnetAddress() + " " + s);
if (s.equals(exit')) // end this conversation
break;

if (s.equals('diel™)) // Kill the server
System.exit(0);
}
sock.close();
} catch (10Exception e) {

System.err_printIn(’'server exception " + e);
v

Multi-threaded Python server

#1/usr/local/bin/python

import SocketServer
import socket
import string

class Srv(SocketServer.StreamRequestHandler):
def handle(self):
print "Python server

called by %s" % (self.client_address,
while 1:

line = self.rfile.readline()
print “server got " + line.strip(Q)
self_wfile.write(line)
it line.strip() == "exit":

break

srv = SocketServer.ThreadingTCPServer((*""*,5194), Srv)

srv.serve_forever()

