
Local Area Networks; Ethernet
• a LAN connects computers in a small area
• Ethernet is the most widely used LAN technology

– developed by Bob Metcalfe & David Boggs (Xerox PARC, 1973)

– each host has a unique 48-bit identification number
– data sent in "packets" of 100-1500 bytes

includes source and destination addresses, error checking
data rate 10-1000 Mbits/sec; maximum cable lengths

– CSMA/CD: carrier sense multiple access with collision detection
sender broadcasts, but if detects someone else sending, stops, waits a random

interval, tries again
– hubs and wireless nets simulate cable behavior

host host
host

coaxial
cable

hdr src dest data CRC
8 6 6 2 46-1500 4

packet:

host

host

host
hub

Internet
• connects independent heterogeneous networks

– each network connects multiple computers
– nearby computers connected by local area network

often Ethernet but lots of other choices
• networks connected by gateways/routers

– route packets from one network to next
– gateways continuously exchange routing information

• each packet passes through multiple gateways
– gateway passes packet to gateway that is closer to ultimate destination
– usually operated by different companies

• information travels through networks in packets
– each packet is independent of all others

like individual envelopes through the mail
– all packets have the same format

but are carried on different physical transport media
• no central control
• ICANN: central authority for resources that have to be unique

– IP addresses, domain names, country codes, ...

Internet mechanisms
• names for networks and computers

– www.cs.princeton.edu, de.licio.us

– hierarchical naming scheme
– imposes logical structure, not physical or geographical

• addresses for identifying networks and computers
– each has a unique 32-bit IP address (IPv6 is 128 bits)
– ICANN assigns contiguous blocks of numbers to networks (icann.org)
– network owner assigns host addresses within network

• DNS Domain Name System maps names /addresses
– www.princeton.edu = 128.112.136.12

– hierarchical distributed database
– caching for efficiency, redundancy for safety

• routing to find paths from network to network
– gateways/routers exchange routing info with nbrs

• protocols for packaging and transporting information, handling errors, ...
– IP (Internet Protocol): a uniform transport mechanism
– at IP level, all info is in a common packet format
– different physical systems carry IP in different formats (e.g., Ethernet, wireless,

fiber, phone,...)
– higher-level protocols built on top of IP for exchanging info like web pages, mail, …

Protocols
• precise rules that govern communication between two parties
• basic Internet protocols usually called TCP/IP

– 1973 by Bob Kahn *64, Vint Cerf
• IP: Internet protocol (bottom level)

– all packets shipped from network to network as IP packets
– each physical network has own format for carrying IP packets (Ethernet, fiber, …)
– no guarantees on quality of service or reliability: "best effort"

• TCP: transmission control protocol
– reliable stream (circuit) transmission in 2 directions
– most things we think of as "Internet" use TCP

• application-level protocols, mostly built from TCP
– SSH, FTP, SMTP (mail), HTTP (web), …

• UDP: user datagram protocol
– unreliable but simple, efficient datagram protocol
– used for DNS, NFS, …

• ICMP: internet control message protocol
– error and information messages
– ping, traceroute

IP
• unreliable connectionless packet delivery service

– every packet has 20-40B header with
source & destination addresses,
time to live: maximum number of hops before packet is discarded (each gateway

decreases this by 1)
checksum of header information (not of data itself)

– up to 65 KB of actual data
• IP packets are datagrams:

– individually addressed packages, like envelopes in mail
– "connectionless": every packet is independent of all others
– unreliable -- packets can be damaged, lost, duplicated, delivered out of

order
– packets can arrive too fast to be processed
– stateless: no memory from one packet to next
– limited size: long messages have to be fragmented and reassembled

• higher level protocols synthesize error-free communication from
IP packets

TCP: Transmission Control Protocol
• reliable connection-oriented 2-way byte stream

– no record boundaries
if needed, create your own by agreement

• a message is broken into 1 or more packets
• each TCP packet has a header (20 bytes) + data

– header includes checksum for error detection,
– sequence number for preserving proper order, detecting missing or

duplicates
• each TCP packet is wrapped in an IP packet

– has to be positively acknowledged to ensure that it arrived safely
otherwise, re-send it after a time interval

• a TCP connection is established to a specific host
– and a specific "port" at that host

• each port provides a specific service
– see /etc/services
– FTP = 21, SSH = 22, SMTP = 25, HTTP = 80

• TCP is basis of most higher-level protocols

Higher level protocols:
• FTP: file transfer
• SSH: terminal session
• SMTP: mail transfer
• HTTP: hypertext transfer -> Web
• protocol layering:

– a single protocol can't do everything
– higher-level protocols build elaborate operations out of simpler ones
– each layer uses only the services of the one directly below
– and provides the services expected by the layer above
– all communication is between peer levels: layer N destination receives

exactly the object sent by layer N source

connectionless packet delivery service

reliable transport service

application

physical layer

Network programming
• C

– client, server, socket functions (similar in Perl)
– based on processes & inetd

• Java
– import java.net.* for Socket, ServerSocket; threads

• Python
– import socket, SocketServer; threads

• underlying mechanism (pseudo-code):
server:

fd = socket(protocol)
bind(fd, port)
listen(fd)
fd2 = accept(fd, port)
while (...)

read(fd2, buf, len)
write(fd2, buf, len)

close(fd2)
client:

fd = socket(protocol)
connect(fd, server IP address, port)
while (...)

write(fd, buf, len)
read(fd, buf, len)

close(fd)

C TCP client
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent *ptrh; /* host table entry */
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
sad.sin_family = AF_INET; /* internet */
sad.sin_port = htons((u_short) port);
ptrh = gethostbyname(host); /* IP address of server /
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
connect(sd, (struct sockaddr *) &sad, sizeof(sad));

while (...) {
write(fd, buf, strlen(buf)); /* write to server */
n = read(fd, buf, N); /* read reply from server */

}
close(fd);

C TCP server
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
struct sockaddr_in cad; /* client adr */
memset((char *) &sad, 0, sizeof(sad));
sad.sin_family = AF_INET; /* internet */
sad.sin_addr.s_addr = INADDR_ANY; /* local IP adr */

sad.sin_port = htons((u_short) port);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
bind(fd, (struct sockaddr *) &sad, sizeof(sad));
listen(fd, QLEN);

while (1) {
fd2 = accept(sd, (struct sockaddr *) &cad, &alen));
while (1) {

read(fd2, buf, N);
write(fd2, buf, N);

}
close(fd2);

}

Perl TCP client
use Socket;

my $host = shift || 'localhost';
my $port = shift || 5194;
my $iaddr = inet_aton($host);
my $paddr = sockaddr_in($port, $iaddr);
my $proto = getprotobyname('tcp');

socket(SOCK, PF_INET, SOCK_STREAM, $proto) or die "socket: $!";
connect(SOCK, $paddr) or die "connect: $!";
print "Perl client calling $host $port\n";

while (<STDIN>) {
syswrite(SOCK, $_, length($_));
my $reply = <SOCK> || "";
chomp $reply;
print "got [$reply]\n";
last if ($_ =~ /exit/);

}
close(SOCK);

Java networking classes
• Socket

– client side
– basic access to host using TCP

reliable, stream-oriented connection
• ServerSocket

– server side
– listens for TCP connections on specified port
– returns a Socket when connection is made

• DatagramSocket: UDP datagrams
– unreliable packet service

• URL, URLConnection
– high level access: maps URL to input stream
– knows about ports, services, etc.

• import java.net.*

Client: copy stdin to server, read reply
• uses Socket class for TCP connection between client & server

import java.net.*;
import java.io.*;

public class cli {

static String host = "localhost";
static String port = "5194";

public static void main(String[] argv) {
if (argv.length > 0)

host = argv[0];
if (argv.length > 1)

port = argv[1];
new cli(host, port);

}

• (continued…)

Client: part 2
cli(String host, String port) { // tcp/ip version

try {
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
Socket sock = new Socket(host, Integer.parseInt(port));
System.err.println("client socket " + sock);
BufferedReader sin = new BufferedReader(

new InputStreamReader(sock.getInputStream()));
BufferedWriter sout = new BufferedWriter(

new OutputStreamWriter(sock.getOutputStream()));
String s;
while ((s = stdin.readLine()) != null) { // read cmd

sout.write(s); // write to socket
sout.newLine();
sout.flush(); // needed
String r = sin.readLine(); // read reply
System.out.println(host + " got [" + r + "]");
if (s.equals("exit"))

break;
}
sock.close();

} catch (IOException e) {
e.printStackTrace();

}
}

Single-thread Java server
• server: echoes lines from client
public class srv {
static String port = "5194";
public static void main(String[] argv) {
if (argv.length == 0)
new srv(port);

else
new srv(argv[0]);

}
srv port) { // tcp/ip version
try {
ServerSocket ss = new ServerSocket(Integer.parseInt(port));
while (true) {
Socket sock = ss.accept();
System.err.println("server socket " + sock);
new echo(sock);

}
} catch (IOException e) {
e.printStackTrace();

}
}
}

Rest of server
class echo {
Socket sock;
echo(Socket sock) throws IOException {
BufferedReader in = new BufferedReader(
new InputStreamReader(sock.getInputStream())); // from sock

BufferedWriter out = new BufferedWriter(
new OutputStreamWriter(sock.getOutputStream())); // to sock

String s;
while ((s = in.readLine()) != null) {

out.write(s);
out.newLine();
out.flush();
if (s.equals("exit"))

break;
}
sock.close();

}
}

• this is single-threaded
– only serves one client at a time

Serving multiple requests simultaneously

• how can we serve more than one at a time?
• in C/Unix, usually start a new process for each conversation

– fork & exec: process is entirely separate entity
– usually shares nothing with other processes
– operating system manages scheduling
– alternative: use a threads package (e.g., pthreads)

• in Java, use threads
– threads all run in the same process and address space
– process itself controls allocation of time (JVM)
– threads have to cooperate (JVM doesn't enforce this)
– threads must not interfere with each other's data and use of time

• Thread class defines two primary methods
– start start a new thread
– run run this thread

• a class that wants multiple threads must
– extend Thread
– implement run()
– call start() when ready, e.g., in constructor

Multi-threaded server
public class multisrv {
static String port = "5194";

public static void main(String[] argv) {
if (argv.length == 0)

multisrv(port);
else

multisrv(argv[0]);
}
public static void multisrv(String port) { // tcp/ip version

try {
ServerSocket ss =

new ServerSocket(Integer.parseInt(port));
while (true) {

Socket sock = ss.accept();
System.err.println("multiserver " + sock);
new echo1(sock);

}
} catch (IOException e) {

e.printStackTrace();
}

}
}

Thread part...
class echo1 extends Thread {
echo1(Socket sock) {

this.sock = sock;
start();

}
public void run() {

try {
BufferedReader in = new BufferedReader(new

InputStreamReader(sock.getInputStream()));
BufferedWriter out = new BufferedWriter(new

OutputStreamWriter(sock.getOutputStream()));
String s;
while ((s = in.readLine()) != null) {

out.write(s);
out.newLine();
out.flush();
System.err.println(sock.getInetAddress() + " " + s);
if (s.equals("exit")) // end this conversation

break;
if (s.equals("die!")) // kill the server
System.exit(0);

}
sock.close();

} catch (IOException e) {
System.err.println("server exception " + e);

}

Multi-threaded Python server
#!/usr/local/bin/python

import SocketServer
import socket
import string

class Srv(SocketServer.StreamRequestHandler):
def handle(self):

print "Python server called by %s" % (self.client_address,
while 1:

line = self.rfile.readline()
print "server got " + line.strip()
self.wfile.write(line)
if line.strip() == "exit":

break

srv = SocketServer.ThreadingTCPServer(("",5194), Srv)
srv.serve_forever()

