
Database systems in 21 minutes
• Relational Database Management Systems

– MySQL, Postgres, SQLite, Oracle, Sybase, DB2, …
• a database is a collection of tables
• each table has a fixed number of columns

– each column is an "attribute" common to all rows
• and a variable number of rows

– each row is a "record" that contains data

isbn title author price

1234 MySQL DuBois 49.95

4321 TPOP K & P 24.95

2468 Ruby Flanagan 79.99

2467 Java Flanagan 89.99

2466 Javascript Flanagan 99.99

1357 Networks Peterson 105.00
1111 Practical Ethics Singer 25.00

4320 C Prog Lang K & R 40.00

Relational model
• simplest database has one table holding all data

– e.g., Excel spreadsheet
• relational model: data in separate tables "related" by common
attributes
– e.g., id in custs matches custid in sales

• schema: content and structure of the tables
books

isbn title author price
custs

id name adr
sales

isbn custid date price qty
stock

isbn count

• extract desired info by queries
• query processing figures out what info comes from what tables,
extracts it efficiently

Sample database
• books
1234 MySQL DuBois 49.95
4321 TPOP K & P 24.95
2468 Ruby Flanagan 79.99
2467 Java Flanagan 89.99

• custs
11 Brian Princeton
22 Bob Princeton
33 Bill Redmond
44 Bob Palo Alto

• sales
4321 11 2010-02-28 45.00 1
2467 22 2010-01-01 60.00 10
2467 11 2010-03-05 57.00 3
4321 33 2010-03-05 45.00 1

• stock
1234 100
4321 20
2468 5
2467 0

Retrieving data from a single table
• SQL ("Structured Query Language") is the standard language
for expressing queries
– all major database systems support it

• general format
select column-names from tables where condition ;

select * from books;

select name, adr from custs;

select title, price from books where price > 50;

select * from books where author = "Flanagan";

select author, title from books where author like "F%";

select author, title from books order by author;

select author, count(*) from books group by author;

• result is a table

Multiple tables and joins
• if desired info comes from multiple tables, this implies a
"join" operator to relate data in different tables
– in effect join makes a big table for later selection

select title, count from books, stock
where books.isbn = stock.isbn;

select * from books, sales
where books.isbn = sales.isbn
and books.author like "F%";

select custs.name, books.title
from books, custs, sales
where custs.id = sales.custid
and sales.isbn = books.isbn;

select price, count(*) as count from books
where author like 'F%'
group by author order by count desc;

Database system organization

network
connection

browser

DB client

DB server

HTTP

SQL
query

HTML

response
(table)

ACID
• the central properties of a database system:

• Atomicity
– all or nothing: all steps of a transaction are completed
– no partially completed transactions

• Consistency
– each transaction maintains consistency of whole database

• Isolation
– effects of a transaction not visible to other transactions until committed

• Durability
– changes are permanent, survive system failure
– consistency guaranteed

MySQL
• open source (?) relational database system

www.mysql.com

• "LAMP"
– Linux
– Apache
– MySQL
– P*: Perl, Python, PHP

• command-line interface:
– connect to server using command interface

mysql -h studentdb -u bwk –p

– type commands, read responses

show databases;
use bwk;
show tables;
select now(), version(), user();
source cmdfile;

Creating and loading a table
• create table

create table books (
isbn varchar(15) primary key,
title varchar(35), author varchar(20),
price decimal(10,2)

);

• load table from file (tab-separated text)

load data local infile "books" into table books
fields terminated by "\t"
ignore 1 lines;

• fields have to be left justified.
• terminated clause must be single character

– not whitespace: multiple blanks are NOT treated as single separator

• can also insert one record at a time
insert into books values('2464','AWK','Flanagan','89.99');

Item types
• INT

– of several sizes
• FLOAT, DOUBLE, DECIMAL
• CHAR, VARCHAR
• BLOB (binary large object)

– of several sizes
• TEXT

– of several sizes
• ENUM

– e.g., 'M', 'F'
• SET
• DATE, TIME, …

Other statements
• generic SQL

– ought to be the same for all db systems
– (though they are not always)

insert into sales

values('1234','44','2008-03-06','27.95');
update books set price = 99.99

where author = "Flanagan";

delete from books where author = "Singer";

• MySQL-specific
– other db's have analogous but different statements

use bwk;

show tables;

describe books;
drop tables if exists books, custs;

SQLite: an alternative (www.sqlite.org)

• small, fast, simple, embeddable
– no configuration
– no server
– single cross-platform database file

• most suitable for
– embedded devices (cellphones)
– web sites with modest traffic & rapid processing

<100K hits/day, 10 msec transaction times
– ad hoc file system or format replacement
– internal or temporary databases

• probably not right for
– large scale client server
– high volume web sites
– gigabyte databases
– high concurrency

• "SQLite is not designed to replace Oracle.
It is designed to replace fopen()."

Program interfaces to MySQL
• original and basic interface is in C

– about 50 functions
– other interfaces build on this
– most efficient access though query complexity is where the time goes
– significant complexity in managing storage for query results

• API's exist for most other languages
– Perl, Python, PHP, Ruby, ...
– C++, Java, …
– can use MySQL from Excel, etc., with ODBC module

• basic structure for all API's is

db_handle = connect to database
repeat {

stmt_handle = prepare an SQL statement
execute (stmt_handle)
fetch result

} until tired
disconnect (db_handle)

Simple standalone Perl example
#!/usr/local/bin/perl -w
use strict;
use DBI;

my $dsn = "DBI:mysql:bwk:studentdb.cs.princeton.edu";
my $dbh = DBI->connect($dsn, "bwk", "xxx", {RaiseError=>1});
print "Enter query: ";
while (<>) {

chomp;
next if $_ eq "";
$sth = $dbh->prepare("$_");
$sth->execute();
while (my @ary = $sth->fetchrow_array()) {

print join ("\t", @ary), "\n";
}
$sth->finish();
print "Enter query: ";

}

$dbh->disconnect();

Perl CGI version (part 1: get query, access db)

#!/usr/local/bin/perl -w
use strict;
use DBI;
use CGI;
my $query = new CGI;
my $ret = "";
my $passwd = $query->param("password");
if (defined($query->param("sql"))) {
my $dsn = "DBI:mysql:bwk:studentdb.cs.princeton.edu";
my $dbh = DBI->connect($dsn, "bwk", $passwd, {RaiseError=>1});
my $q = $query->param("sql");
my $sth = $dbh->prepare($q);
my $nchg = $sth->execute();
my @ary;
if ($nchg > 0) {

while (@ary = $sth->fetchrow_array()) {
$ret .= join ("\t", @ary), "\n";

}
}
$sth->finish();
$dbh->disconnect();

}

Perl CGI version (part 2: generate HTML)

print $query->header;
print $query->start_html(-title=>'MySQL test', -
bgcolor=>'white');

print qq(<P><form METHOD=POST enctype="multipart/form-data"
ACTION="http://www.cs.princeton.edu/

~bwk/mysql.cgi">\n);
my $s = $query->param("sql");
print qq(Password: <input type="password"

name=password text="" size="30">\n);
print qq(
<textarea name=sql rows=5

cols=65 wrap>$s</textarea>\n);
print qq(
<input type="submit"

value="Submit"> <input type=reset>\n);
print qq(
<textarea name=results

rows=15 cols=60 wrap>\n
$ret\n</textarea>\n);

print "</form>\n";

print $query->end_html();

PHP version (just enough to demonstrate connectivity)

<html>
<title>test</title>
<body bgcolor=white>
<?php
$con = mysql_connect("studentdb.cs.princeton.edu", "bwk", "xx");
if (!$con) {
echo "Error: couldn't connect
\n";
$er = mysql_error($con);
echo " $er\n";
exit;

}
mysql_select_db("bwk", $con);
$result = mysql_query("select * from books");
while ($row = mysql_fetch_array($result)) {
for ($i = 0; $i < mysql_num_fields($result); $i++) {

printf("%s ", $row[$i]);
}
printf("
\n");

}
?>
</body></html>

ODBC, JDBC, and all that
• ODBC ("open database connectivity")

– Microsoft standard interface between applications and databases
– API provides basic SQL interface
– driver does whatever work is needed to convert
– underlying database has to provide basic services
– used for applications like Excel, Visual Basic, C/C++, ...
– drivers exist for all major databases
– makes applications relatively independent of specific database being used

• JDBC is the same thing for Java
– passes calls through to ODBC drivers or other database software

mysql oracle postgres

drv drv drv

Excel PHP
ODBC
API

MySQL access from Java (Connector/J JDBC package)

import java.sql.*;

public class mysql {
public static void main(String args[]) {
String url = "jdbc:mysql://studentdb.cs.princeton.edu/bwk";
try {

Class.forName("com.mysql.jdbc.Driver");
} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: " + e.getMessage());
}
try {

Connection con = DriverManager.getConnection(url, "bwk", "xxx");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from books");
while (rs.next())

System.out.println(rs.getString("title") + " "
+ rs.getString("author"));

stmt.close();
con.close();

} catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());

}
}

Interface design
• two different possible table structures:

books

isbn title author price

booktitle, bookauthor, bookprice

isbn title

isbn author

isbn price

• they need different SQL queries:
select title, author, price from books;

select title, author, price

from booktitle, bookauthor,bookprice

where booktitle.isbn = bookauthor.isbn

and bookauthor.isbn = bookprice.isbn;

• most of the program should be independent of the specific table
organization
– shouldn't know or care which one is being used

getList(title, author, price)

