"A programming language that doesn't
change the way you think is not worth
learning."

Alan Perlis, Epigrams in Programming

Alan Perlis, 1922-1990
first head of CMU CS department
first president of ACM
first Turing Award winner

AWK

* a language for pattern scanning and processing
- Al Aho, Brian Kernighan, Peter Weinberger, at Bell Labs, ~1977
- intended for simple data processing:
- selection, validation:
"Print all lines longer than 80 characters"
length > 80

* transforming, rearranging:
"Replace the 2nd field by its logarithm"
{ $2 = 1og($2); print }

* report generation:
"Add up the numbers in the first field,
then print the sum and average"

{ sum += $1 }
END { print sum, sum/NR }

Structure of an AWK program:

* a sequence of pattern-action statements

pattern { action }
pattern { action }

+ "pattern" is a regular expression, numeric expression, string expression
or combination of these
+ "action" is executable code, similar to C

* usage:
awk "program® [filel file2 ...]
awk -T progfile [filel file2 ...]

* operation:
for each file
for each input line
for each pattern
if pattern matches input line
do the action

AWK features:

- input is read automatically across multiple files
- lines are split into fields ($1, ..., $NF; $0 for whole line)
- variables contain string or numeric values (or both)
- no declarations: type determined by context and use
- initialized to O and empty string
- built-in variables for frequently-used values
- operators work on strings or numbers
- coerce type / value according to context
- associative arrays (arbitrary subscripts)
* regular expressions (like egrep)
- control flow statements similar to C: if-else, while, for, do
* built-in and user-defined functions
- arithmetic, string, regular expression, text edit, ...
e printf for formatted output
= getline for input from files or processes

Basic AWK programs, part 1

{ print NR, $0 } precede each line by line number
{ $1 = NR; print } replace first field by line number
{ print $2, $1 } print field 2, then field 1

{ temp = $1; $1 = $2; $2 = temp; print } flip $1, $2
{ $2 =""; print } zap field 2

{ print $NF } print last field

NF > 0 print non-empty lines

NF > 4 print if more than 4 fields

$NF > 4 print if last field greater than 4
/regexpr/ print matching lines (egrep)

$1 ~ /regexpr/ print lines where first field matches

Basic AWK programs, part 2
NF > 0 {print $1, $2} print two fields of non-empty lines
END { print NR } line count

{ nc += length($0) + 1; nw += NF } wc command
END { print NR, "lines"™, nw, "words"™, nc, 'characters" }

length($0) > max { max = length($0); line = $0 }
END { print max, line } print longest line

Control flow

- if-else, while, for, do...while, break, continue
- as in C, but no switch

- for (i in array)
- go through each subscript of an associative array

* next start next iteration of main loop
- exit leave main loop, go to END block

{ sum = 0
for (i = 1; 1 <= NF; i++)
sum += $i
print sum

}

{ for (i = 1; i <= NF; i++)
sum += $i

}
END { print sum }

Awk text formatter

#1/bin/sh
£ - format text into 60-char lines

awk -

/./ { for (i = 1; 1 <= NF; i++)
addword($i) }

/"$/ { printline(); print " }

END { printline(Q) }

function addword(w) {
if (length(line) + length(w) > 60)
printline()
line = line space w
space = " "

}

function printline() {
it (length(line) > 0)
print line
line = space =

}
- ll$@ll

Arrays

- common case: array subscripts are integers

- reverse a file:

{ X[NR] = $0 } # put each line into array X
END { for (i = NR; i > 0; i--)
print x[i] }

- make an array:
n = split(string, array, separator)
- splits "string" into array[1] ... array[n]

- returns number of elements
- optional "separator" can be any regular expression

Associative Arrays

- array subscripts can have any value, not just integers
+ canonical example: adding up name-value pairs

* input:
pizza 200
beer 100
pizza 500
beer 50
- output:
pizza 700
beer 150
* program:

{ amount[$1] += $2 }
END { for (name in amount)
print name, amount[name] | "'sort +1 -nr

}

Anatomy of a compiler

input

lexical analysis

~

tokens

syntax analysis I symbol table

intermediate form

]
code generation

bject fil
e . L T—
input
data a.out — output
Anatomy of an interpreter
input |
lexical ;'.malysis
tokens l \
syntax analysis ; symbol table

intermediate form e

A 4 7

input execution
data

YACC and LEX

languages/tools for building [parts of] compilers and interpreters

* YACC: '"yet another compiler compiler" (S. €. Johnson, ~ 1972)
- converts a grammar and semantic actions into a parser for that grammar

LEX: lexical analyzer generator (M. E. Lesk, ~ 1974)

- converts regular expressions for tokens into a lexical analyzer that
recognizes those tokens

- parser calls lexer each time it needs another input token
* lexer returns a token and its lexical type

- when to think of using them:

real grammatical structures (e.g., recursively defined)
complicated lexical structures

rapid development time is important

language design might change

YACC-based calculator

%{
#define YYSTYPE double /* data type of yacc stack */

%}
%token NUMBER
wleft b /* left associative, same precedence */
%left o A /* left associative, higher precedence */
%%
list: expr "\n-" { printf(C"\t%.8g\n", $1); }
] list expr "\n* { printf("\t%.8g\n", $2); }
expr: NUMBER {$$ =91 }
| expr "+* expr { $$ = $1 + $3; }
| expr "-" expr { $$ = $1 - $3; }
| expr "*" expr { $$ = $1 * $3; }
| expr */" expr { $$ = $1 /7 $3; }
| “C expr ") {$$ =8$2; }
%%
#include <stdio.h>
#include <ctype.h>
mainQ) { yyparse(Q) }
yylex() { /* calculator lexical analysis */
int c;
while ((c=getchar()) == " " |] ¢ == "\t") ;
if (c == EOF) return O;
if (c == "_" || isdigit(c)) { /* number */
ungetc(c, stdin);
scanf("%lf", &yylval); /* lexical value */
return NUMBER; /* lexical type */
3
return c;

yyerror(char *s) { fprintf(stderr, "%s\n", s); } /* called for yacc syntax error */

YACC overview

YACC converts grammar rules & semantic actions into parsing fcn yyparse()

- yyparse parses programs written in that grammar, performs semantic actions as
grammatical constructs are recognized

+ semantic actions usually build a parse tree
- each node represents a particular syntactic type, children are components
+ code generator walks the tree to generate code
- may rewrite tree as part of optimization
* an interpreter could
- rundirectly from the program (TCL)
- interpret directly from the tree (AWK, Perl?):
at each node, interpret children (recursion), do operation of node itself, return result
- generate byte code output to run elsewhere (Java)
- generate internal byte code (Python?, ...)
- generate C to be compiled later
+ compiled code runs faster
- but compilation takes longer, needs object files, less portable, ...
* interpreters start faster, but run slower
- for 1- or 2-line programs, interpreter is better
- on the fly / just in time compilers merge these (e.g., NET, some Java)

Grammar specified in YACC

+ grammar rules give syntax
+ the action part of a rule gives semantics
- usually used to build a parse tree

statement .
IF (expression) statement
create node(IF, expr, stmt, 0)
IF (expression) statement ELSE statement
create node(IF, expr, stmtl, stmt2)
WHILE (expression) statement
create node(WHILE, expr, stmt)
variable = expression
create node(ASSIGN, var, expr)

expression
expression + expression
expression - expression

* YACC creates a parser from this

* when the parser runs, it creates a parse tree
* a compiler walks the tree to generate code

* an interpreter walks the tree to execute it

Excerpt from a real grammar

term:

term "/° ASGNOP term { $$ = op2(DIVEQ, $1, $4); }
| term "+" term { $$ = op2(ADD, $1, $3); }
| term "-" term { $$ = op2(MINUS, $1, $3); }
| term **" term { $$ = op2(MULT, $1, $3); }
| term /" term { $$ = op2(DIVIDE, $1, $3); }
| term "%" term { $$ = op2(mMOD, $1, $3); }
| term POWER term { $$ = op2(POWER, $1, $3); }
| "-° term %prec UMINUS { $$ = opl(UMINUS, $2); }
| "+ term %prec UMINUS { $$ = $2; }
|

NOT term %prec UMINUS
{ $$ = opl(NOT, notnull($2)); }
| BLTIN *(" patlist *)"
{ $$ = op2(BLTIN, itonp($1), $3); }

| DECR var { $$ = opl(PREDECR, $2); }
| INCR var { $$ = opl(PREINCR, $2); }
| var DECR { $$ = opl(POSTDECR, $1); }
| var INCR { $$ = opl(POSTINCR, $1); }

Excerpts from a real grammar

term:

| term "+" term { $$ = op2(ADD, $1, $3); }

| term "-" term { $% = op2(MINUS, $1, $3); }

| term "*" term { $$ = op2(MULT, $1, $3); }

| term "/ term { $$ = op2(DIVIDE, $1, $3); }

| term "%" term { $$ = op2(MOD, $1, $3); }

| "-° term %prec UMINUS { $$ = opl(UMINUS, $2); }

| INCR var { $$ = opl(PREINCR, $2); }

| var INCR { $$ = opl(POSTINCR, $1); }
stmt:

| while {inloop++;} stmt {--inloop; $$ = stat2(WHILE,$1,$3);}
| if stmt else stmt { $$ = stat3(IF, $1, $2, $4); }
| if stmt { $$ = stat3(IF, $1, $2, NIL); }
| Ibrace stmtlist rbrace { $$ = $2; }

while:
WHILE "(" pattern rparen { $% = notnull($3); }

Excerpts from a LEX analyzer

Yt { yylval.i
Bt { yylval.i

INCR; RET(INCR); }
DECR; RET(DECR); }

([0-91+(\-?)[0-91*I\. [0-9]1+) ([eE1(\+]-)?[0-9]+)? {
yylval .cp = setsymtab(yytext, tostring(yytext),
atof(yytext), CON|JNUM, symtab);

RET(NUMBER); }

while { RET(WHILE); }
for { RET(FOR); }
do { RET(DO); }
if { RET(IF); }
else { RET(ELSE); }
return { 1t (1infunc)
ERROR "return not in function™ SYNTAX;
RET(RETURN) ;
be

- { RET(yylval.1 = yytext[0]); /* everything else */ }

The whole process

l grammar l lexical rules
YACC Lex (or other) other C code
y.tab.c par'ser'\ / Iex.yW
C compiler

!

a.out

AWK implementation

- source code is about 6000 lines of C and YACC
- compiles @mosn without change on Unix/Linux, Windows, Mac

* parse tree nodes:
typedef struct Node {
int type; /* ARITH, .. */
Node *next;
Node *child[4];
} Node;

- leaf nodes (values):
typedef struct Cell {
int type; /* VAR, FLD, .. */
Cell *next;
char *name;
char *sval; /* string value */
double fval; /* numeric value */
int state; /* STR | NUM | ARR .. */
} Cell;

Using Awk for testing RE code

- regular expression tests are described in a very small specialized

language:
na.$ ~ ax
aa
I~ Xa
aaa
axy

- each test is converted info a command that exercises awk:
echo "ax" | awk "1/7a.$"/ { print "bad" }-

* illustrates
- little languages
- programs that write programs
- mechanization

Unit testing

- code that exercises/tests small area of functionality
- single method, function, ...
* helps make sure that code works and stays working
- make sure small local things work so can build larger things on top

+ very often used in "the real world"
- eg., can't check in code unless has tests and passes them

- often have tools to help write tests, run them automatically
- e.g., JUnit

struct {

int yesno; char *re; char *text;
} tests[100] = {

1, "x", "X,

0, "x", "y",

0, 0, 0
}:
main() {

for (int 1 = 0; tests[i].re = 0; i1++) {
if (match(tests[i].re, tests[i]-text) != tests[i].yesno)
printf("'%d failed: %d [%s] [%s]\n", i,
tests[i].yesno, tests[i].re, tests[i].text);

Record keeping

* record of all bug fixes since August 1987
Nov 26, 2009:

+ fixed a long-standing issue with when FS takes effect. a change to FS is
now noticed immediately for subsequent splits.

+ changed the name getline() o awkgetline() to avoid yet another name
conflict somewhere.

Feb 11, 2009:

* temporarily for now defined HAS_ISBLANK, since that seems to be the
best way through the thicket. isblank arrived in €99, but seems to be
arriving at different systems at different times.

Oct 8, 2008:

+ fixed typo in b.c that set tmpvec wrongly. no one had ever run into the
problem, apparently. thanks to alistair crooks.

Oct 23, 2007:
* minor fix in lib.c: increase inputFS to 100, change malloc for fields to n+1.

- fixed memory fault caused by out of order test in setsval. thanks to david
o'brien, freebsd, for both fixes.

Feb 21, 2007:
- fixed quotation in b.c; thanks to Hal Pratt and the Princeton Dante Project.

Lessons

- people use tools in unexpected, perverse ways
- compiler writing: implementing languages and other tools
- object language (programs generate Awk)
- first programming language

- existence of a language encourages programs to generate it
- machine generated inputs stress differently than people do

- mistakes are inevitable and hard to change
- concatenation syntax

ambiguities, especially with >

function syntax

creeping featurism from user pressure

difficulty of changing a "standard"

"One thing [the language designer] should not do is to include
untried ideas of his own."
(C. A.R. Hoare, Hints on Programming Language Design, 1973)

