
"A programming language that doesn't 
change the way you think is not worth 
learning."

Alan Perlis, Epigrams in Programming

Alan Perlis, 1922-1990
first head of CMU CS department
first president of ACM
first Turing Award winner

AWK

• a language for pattern scanning and processing
– Al Aho, Brian Kernighan, Peter Weinberger, at Bell Labs, ~1977

• intended for simple data processing:
• selection, validation:

"Print all lines longer than 80 characters"
length > 80

• transforming, rearranging:
"Replace the 2nd field by its logarithm"

{ $2 = log($2); print }

• report generation:
"Add up the numbers in the first field,
then print the sum and average"

{ sum += $1 }
END  { print sum, sum/NR }



Structure of an AWK program:
• a sequence of pattern-action statements

pattern { action }
pattern { action }
…

• "pattern" is a regular expression, numeric expression, string expression  
or combination of these

• "action" is executable code, similar to C

• usage:
awk 'program' [ file1 file2 ... ]
awk -f progfile [ file1 file2 ... ]

• operation:
for each file

for each input line
for each pattern

if pattern matches input line
do the action

AWK features:

• input is read automatically across multiple files
– lines are split into fields ($1, ..., $NF; $0 for whole line)

• variables contain string or numeric values (or both)
– no declarations: type determined by context and use
– initialized to 0 and empty string
– built-in variables for frequently-used values

• operators work on strings or numbers
– coerce type / value according to context

• associative arrays (arbitrary subscripts)
• regular expressions (like egrep)
• control flow statements similar to C: if-else, while, for, do
• built-in and user-defined functions

– arithmetic, string, regular expression, text edit, ...
• printf for formatted output
• getline for input from files or processes



Basic AWK programs, part 1

{ print NR, $0 } precede each line by line number
{ $1 = NR; print } replace first field by line number
{ print $2, $1 } print field 2, then field 1
{ temp = $1; $1 = $2; $2 = temp; print } flip $1, $2
{ $2 = ""; print } zap field 2
{ print $NF } print last field

NF > 0 print non-empty lines
NF > 4 print if more than 4 fields
$NF > 4 print if last field greater than 4
/regexpr/ print matching lines (egrep)
$1 ~ /regexpr/ print lines where first field matches

Basic AWK programs, part 2

NF > 0 {print $1, $2}  print two fields of non-empty lines

END { print NR } line count

{ nc += length($0) + 1; nw += NF } wc command
END { print NR, "lines", nw, "words", nc, "characters" }

length($0) > max { max = length($0); line = $0 }

END      { print max, line } print longest line



Control flow
• if-else, while, for, do...while, break, continue

– as in C, but no switch

• for (i in array)
– go through each subscript of an associative array

• next start next iteration of main loop
• exit leave main loop, go to END block

{ sum = 0
for (i = 1; i <= NF; i++)

sum += $i
print sum

}

{ for (i = 1; i <= NF; i++)
sum += $i 

}
END { print sum }

Awk text formatter
#!/bin/sh
# f - format text into 60-char lines

awk '
/./  { for (i = 1; i <= NF; i++)

addword($i) }
/^$/ { printline(); print "" }
END  { printline() }

function addword(w) {
if (length(line) + length(w) > 60)

printline()
line = line space w
space = " "

}

function printline() {
if (length(line) > 0)

print line
line = space = ""

}
' "$@"



Arrays

• common case: array subscripts are integers

• reverse a file:

{ x[NR] = $0 }   # put each line into array x

END  { for (i = NR; i > 0; i--)

print x[i] }

• make an array:

n = split(string, array, separator)

– splits "string" into array[1] ... array[n]
– returns number of elements
– optional "separator" can be any regular expression

Associative Arrays
• array subscripts can have any value, not just integers
• canonical example: adding up name-value pairs

• input:
pizza 200
beer 100
pizza 500
beer 50

• output:
pizza 700
beer 150

• program:

{ amount[$1] += $2 }
END { for (name in amount)

print name, amount[name] | "sort +1 -nr" 
}
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YACC and LEX
• languages/tools for building [parts of] compilers and interpreters 

• YACC:  "yet another compiler compiler" (S. C. Johnson, ~ 1972)
– converts a grammar and semantic actions into a parser for that grammar

• LEX:  lexical analyzer generator  (M. E. Lesk, ~ 1974)
– converts regular expressions for tokens into a lexical analyzer that 

recognizes those tokens

• parser calls lexer each time it needs another input token
• lexer returns a token and its lexical type

• when to think of using them:
– real grammatical structures (e.g., recursively defined)
– complicated lexical structures
– rapid development time is important
– language design might change

YACC-based calculator
%{
#define YYSTYPE double /* data type of yacc stack */
%}
%token NUMBER
%left '+' '-' /* left associative, same precedence */
%left '*' '/' /* left associative, higher precedence */
%%
list:  expr '\n'         { printf("\t%.8g\n", $1); }

| list expr '\n'    { printf("\t%.8g\n", $2); }
;

expr: NUMBER { $$ = $1; }
| expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
;

%%
#include <stdio.h>
#include <ctype.h>
main() { yyparse() }
yylex() { /* calculator lexical analysis */

int c;
while ((c=getchar()) == ' ' || c == '\t') ;
if (c == EOF) return 0;
if (c == '.' || isdigit(c)) { /* number */

ungetc(c, stdin);
scanf("%lf", &yylval); /* lexical value */
return NUMBER; /* lexical type */

}
return c;

}
yyerror(char *s) { fprintf(stderr, "%s\n", s); } /* called for yacc syntax error */



YACC overview
• YACC converts grammar rules & semantic actions into parsing fcn yyparse()

– yyparse parses programs written in that grammar, performs semantic actions as 
grammatical constructs are recognized

• semantic actions usually build a parse tree
– each node represents a particular syntactic type, children are components

• code generator walks the tree to generate code
– may rewrite tree as part of optimization

• an interpreter could
– run directly from the program (TCL)
– interpret directly from the tree (AWK, Perl?):

at each node, interpret children (recursion), do operation of node itself, return result
– generate byte code output to run elsewhere (Java)
– generate internal byte code (Python?, …)
– generate C to be compiled later

• compiled code runs faster
– but compilation takes longer, needs object files, less portable, …

• interpreters start faster, but run slower
– for 1- or 2-line programs, interpreter is better 
– on the fly / just in time compilers merge these (e.g., .NET, some Java)

Grammar specified in YACC
• grammar rules give syntax
• the action part of a rule gives semantics

– usually used to build a parse tree

statement : 
IF ( expression ) statement

create node(IF, expr, stmt, 0)
IF ( expression ) statement ELSE statement

create node(IF, expr, stmt1, stmt2)
WHILE (expression ) statement

create node(WHILE, expr, stmt)
variable = expression

create node(ASSIGN, var, expr)
…

expression :
expression + expression
expression - expression
...

• YACC creates a parser from this
• when the parser runs, it creates a parse tree
• a compiler walks the tree to generate code
• an interpreter walks the tree to execute it



Excerpt from a real grammar
term:

term '/' ASGNOP term   { $$ = op2(DIVEQ, $1, $4); }

| term '+' term          { $$ = op2(ADD, $1, $3); }

| term '-' term          { $$ = op2(MINUS, $1, $3); }

| term '*' term          { $$ = op2(MULT, $1, $3); }

| term '/' term          { $$ = op2(DIVIDE, $1, $3); }

| term '%' term          { $$ = op2(MOD, $1, $3); }

| term POWER term        { $$ = op2(POWER, $1, $3); }

| '-' term %prec UMINUS  { $$ = op1(UMINUS, $2); }

| '+' term %prec UMINUS  { $$ = $2; }

| NOT term %prec UMINUS 

{ $$ = op1(NOT, notnull($2)); }

| BLTIN '(' patlist ')' 

{ $$ = op2(BLTIN, itonp($1), $3); }

| DECR var { $$ = op1(PREDECR, $2); }

| INCR var { $$ = op1(PREINCR, $2); }

| var DECR               { $$ = op1(POSTDECR, $1); }

| var INCR               { $$ = op1(POSTINCR, $1); }

Excerpts from a real grammar
term:
| term '+' term          { $$ = op2(ADD, $1, $3); }
| term '-' term          { $$ = op2(MINUS, $1, $3); }
| term '*' term          { $$ = op2(MULT, $1, $3); }
| term '/' term          { $$ = op2(DIVIDE, $1, $3); }
| term '%' term          { $$ = op2(MOD, $1, $3); }
| '-' term %prec UMINUS  { $$ = op1(UMINUS, $2); }
| INCR var { $$ = op1(PREINCR, $2); }
| var INCR               { $$ = op1(POSTINCR, $1); }

stmt:
| while {inloop++;} stmt  {--inloop; $$ = stat2(WHILE,$1,$3);}
| if stmt else stmt { $$ = stat3(IF, $1, $2, $4); }
| if stmt { $$ = stat3(IF, $1, $2, NIL); }
| lbrace stmtlist rbrace { $$ = $2; }

while:
WHILE '(' pattern rparen { $$ = notnull($3); }



Excerpts from a LEX analyzer
"++"         { yylval.i = INCR; RET(INCR); }
"--"         { yylval.i = DECR; RET(DECR); }

([0-9]+(\.?)[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)? {
yylval.cp = setsymtab(yytext, tostring(yytext), 

atof(yytext), CON|NUM, symtab);
RET(NUMBER); }

while   { RET(WHILE); }
for     { RET(FOR); }
do      { RET(DO); }
if      { RET(IF); }
else    { RET(ELSE); }
return  { if (!infunc) 

ERROR "return not in function" SYNTAX; 
RET(RETURN); 

}

• { RET(yylval.i = yytext[0]); /* everything else */ }

The whole process

YACC Lex (or other)

grammar lexical rules

other C code

C compiler

a.out

y.tab.c parser lex.yy.c analyzer



AWK implementation
• source code is about 6000 lines of C and YACC
• compiles (almost) without change on Unix/Linux, Windows, Mac

• parse tree nodes:
typedef struct Node {

int type;  /* ARITH, … */
Node *next;
Node *child[4];

} Node;

• leaf nodes (values):
typedef struct Cell {

int type;   /* VAR, FLD, … */
Cell *next;
char *name;
char *sval;  /* string value */
double fval; /* numeric value */
int state;   /* STR | NUM | ARR … */

} Cell;

Using Awk for testing RE code

• regular expression tests are described in a very small specialized 
language:

^a.$    ~       ax

aa

!~      xa

aaa

axy

• each test is converted into a command that exercises awk:
echo 'ax' | awk '!/^a.$'/ { print "bad" }'

• illustrates
– little languages
– programs that write programs
– mechanization



Unit testing
• code that exercises/tests small area of functionality

– single method, function, ...
• helps make sure that code works and stays working 

– make sure small local things work so can build larger things on top
• very often used in "the real world"

– e.g., can't check in code unless has tests and passes them
• often have tools to help write tests, run them automatically

– e.g., JUnit

struct {
int yesno; char *re; char *text;

} tests[100] = {
1, "x", "x",
0, "x", "y",
0, 0, 0

};
main() {

for (int i = 0; tests[i].re != 0; i++) {
if (match(tests[i].re, tests[i].text) != tests[i].yesno)

printf("%d failed: %d [%s] [%s]\n", i, 
tests[i].yesno, tests[i].re, tests[i].text);

}
}

Record keeping
• record of all bug fixes since August 1987
Nov 26, 2009:
• fixed a long-standing issue with when FS takes effect.  a change to FS is 

now noticed immediately for subsequent splits.
• changed the name getline() to awkgetline() to avoid yet another name 

conflict somewhere.
Feb 11, 2009:
• temporarily for now defined HAS_ISBLANK, since that seems to be the 

best way through the thicket.  isblank arrived in C99, but seems to be 
arriving at different systems at different times.

Oct 8, 2008:
• fixed typo in b.c that set tmpvec wrongly.  no one had ever run into the 

problem, apparently.  thanks to alistair crooks.
Oct 23, 2007: 
• minor fix in lib.c: increase inputFS to 100, change malloc for fields to n+1.
• fixed memory fault caused by out of order test in setsval. thanks to david

o'brien, freebsd, for both fixes.
...
Feb 21, 2007:
• fixed quotation in b.c; thanks to Hal Pratt and the Princeton Dante Project.



Lessons

• people use tools in unexpected, perverse ways
– compiler writing: implementing languages and other tools
– object language (programs generate Awk)
– first programming language

• existence of a language encourages programs to generate it
– machine generated inputs stress differently than people do

• mistakes are inevitable and hard to change
– concatenation syntax
– ambiguities, especially with >
– function syntax
– creeping featurism from user pressure
– difficulty of changing a "standard"

"One thing [the language designer] should not do is to include 
untried ideas of his own."
(C. A. R. Hoare, Hints on Programming Language Design, 1973)


